Study on nanoscale obstructed flow with Molecular Dynamics Simulation method
by Jie Sun, Ya-Ling He, Yin-Shi Li, Wen-Quan Tao
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 10, No. 1, 2010

Abstract: Obstructed flow around single cylinder and two paratactic cylinders in nanoscale were investigated in the view of discrete particles. Transient and temporal-averaged flow and density fields were obtained to analyse the wake flow. For single cylinder case, Stokes flow, steady vortex flow, periodic vortex-shedding flow with the Karman vortex street and supersonic flow were distinguished based on Re. For two paratactic cylinders case, periodic vortex-shedding flow, periodic vortex-shedding flow with gap-flow, bistable flow and synchronised vortex-shedding flow were observed with different centre-to-centre pitch ratios. Despite of some special characteristics, the results indicate most macroscopic flow patterns still exist in nanoscale.

Online publication date: Tue, 15-Dec-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com