Constructions of self-dual codes over finite commutative chain rings Online publication date: Wed, 10-Mar-2010
by Steven T. Dougherty, Jon-Lark Kim, Hongwei Liu
International Journal of Information and Coding Theory (IJICOT), Vol. 1, No. 2, 2010
Abstract: We study self-dual codes over chain rings. We describe a technique for constructing new self-dual codes from existing codes and we prove that for chain rings containing an element c with c² = −1, all self-dual codes can be constructed by this technique. We extend this construction to self-dual codes over principal ideal rings via the Chinese Remainder Theorem. We use torsion codes to describe the structure of self-dual codes over chain rings and to set bounds on their minimum Hamming weight. Interestingly, we find the first examples of MDS self-dual codes of lengths 6 and 8 and near-MDS self-dual codes of length 10 over a certain chain ring which is not a Galois ring.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Coding Theory (IJICOT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com