Experimental study and nonlinear modelling by artificial neural networks of a distillation column Online publication date: Fri, 02-Apr-2010
by Yahya Chetouani
International Journal of Reliability and Safety (IJRS), Vol. 4, No. 2/3, 2010
Abstract: Chemical industries are characterised by complex nonlinear processes. A suitable class of Non-linear Auto-Regressive Moving Average with eXogenous (NARMAX) models is considered which captures most of the system dynamics. The use of this model should reflect the normal behaviour of the process and be used for developing a cost-effective Fault Detection and Diagnosis (FDD) method. An Artificial Neural Network (ANN) is used to model plant input-output data by means of a NARMAX model. Three statistical criteria are used for the validation of the experimental data. A realistic and complex application as a distillation column is presented in order to illustrate the proposed ideas concerning the dynamics modelling and model reduction. Satisfactory agreement between identified and experimental data is found and results show that the reduced neural model successfully predicts the evolution of the product composition.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com