Using Hybrid Hierarchical K-means (HHK) clustering algorithm for protein sequence motif Super-Rule-Tree (SRT) structure construction
by Bernard Chen, Jieyue He, Stephen Pellicer, Yi Pan
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 4, No. 3, 2010

Abstract: Many algorithms or techniques to discover motifs require a predefined fixed window size in advance. Because of the fixed size, these approaches often deliver a number of similar motifs simply shifted by some bases or including mismatches. To confront the mismatched motifs problem, we use the super-rule concept to construct a Super-Rule-Tree (SRT) by a modified Hybrid Hierarchical K-means (HHK) clustering algorithm, which requires no parameter set-up to identify the similarities and dissimilarities between the motifs. By analysing the motif results generated by our approach, they are significant not only in sequence area but also in secondary structure similarity.

Online publication date: Wed, 02-Jun-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com