A 3D shape classifier with neural network supervision
by Zhenbao Liu, Jun Mitani, Yukio Fukui, Seiichi Nishihara
International Journal of Computer Applications in Technology (IJCAT), Vol. 38, No. 1/2/3, 2010

Abstract: The task of 3D shape classification is to assign a set of unordered shapes into pre-tagged classes with class labels. In this paper, we present a 3D shape classifier approach based on supervision of the learning of point spatial distributions. We first extract the low-level features by characterising the point spatial density distributions, and train one feed-forward neural network to learn these features by examples. The Konstanz shape database was chosen as the test database to evaluate the accuracy rate of classification. We also compared this classifier to the k nearest neighbours classifier for 3D shapes.

Online publication date: Fri, 16-Jul-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com