Way adaptable D-NUCA caches Online publication date: Sat, 07-Aug-2010
by Alessandro Bardine, Manuel Comparetti, Pierfrancesco Foglia, Giacomo Gabrielli, Cosimo Antonio Prete
International Journal of High Performance Systems Architecture (IJHPSA), Vol. 2, No. 3/4, 2010
Abstract: Non-uniform cache architecture (NUCA) aims to limit the wire-delay problem typical of large on-chip last level caches: by partitioning a large cache into several banks, with the latency of each one depending on its physical location and by employing a scalable on-chip network to interconnect the banks with the cache controller, the average access latency can be reduced with respect to a traditional cache. The addition of a migration mechanism to move the most frequently accessed data towards the cache controller (D-NUCA) further improves the average access latency. In this work we propose a last-level cache design, based on the D-NUCA scheme, which is able to significantly limit its static power consumption by dynamically adapting to the needs of the running application: the way adaptable D-NUCA cache. This design leads to a fast and power-efficient memory hierarchy with an average reduction by 31.2% in energy-delay product (EDP) with respect to a traditional D-NUCA. We propose and discuss a methodology for tuning the intrinsic parameters of our design and investigate the adoption of the way adaptable D-NUCA scheme as a shared L2 cache in a chip multiprocessor (CMP) system (24% reduction of EDP).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Systems Architecture (IJHPSA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com