Fault diagnosis of nuclear power plant based on genetic-RBF neural network
by Chun-Ling Xie, Jen-Yuan Chang, Xiao-Cheng Shi, Jing-Min Dai
International Journal of Computer Applications in Technology (IJCAT), Vol. 39, No. 1/2/3, 2010

Abstract: This paper presents development of an automatic fault diagnosis system in the nuclear power plants to minimise the possible nuclear disasters caused by inaccurate diagnoses done by operators. Combined binary and decimal coding methods are employed in this work based on Radial Basis Function Neural Network (RBFNN) structure. This underlying RBFNN structure is further trained through genetic optimisation algorithm based on known frequent failure conditions from a nuclear power plant's condensation and feed-water system. It is found that the proposed Genetic-RBFNN (GRBFNN) method not only makes the original neural network smaller in terms of computation and realisation but also improves the diagnosis speed and accuracy.

Online publication date: Wed, 18-Aug-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com