Realising high accuracy machining by applying optimal clamping forces
by Ying Huang, Lihui Wang
International Journal of Computer Applications in Technology (IJCAT), Vol. 19, No. 2, 2004

Abstract: In this research, appropriate magnitudes of clamping forces and their applying methods are studied to improve machining accuracy. The objective of this study is to find a minimum-clamping load that must be applied to keep a workpiece in static equilibrium and to assure that the total workpiece deformation is minimised in a machining process. In particular, a machining feature-based clamping force optimisation model is presented for this purpose. Through cutting experiments, it is observed that the maximum cutting forces occur in different directions for each machining feature. These maximum cutting forces are measured and integrated into a machining feature-based cutting force database. The deformation of a workpiece is then estimated using finite element analysis, when clamping force and cutting force along tool path are loaded. By combining the results of the above two steps, a mathematical optimisation model is formulated. This model not only makes it possible to minimise the workpiece's deformation under several cutting operations in one machining process, but also finds optimum clamping forces exerted at the contact regions. The results of the case study demonstrate the effectiveness and validity of the methodology, which shows promise of improving the quality of machined products based on the optimised fixture design and set-up.

Online publication date: Wed, 08-Oct-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com