Towards real-time performance of data privacy protection Online publication date: Sat, 20-Nov-2010
by Jie Wang, Jun Zhang, Justin Zhan
International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS), Vol. 1, No. 4, 2010
Abstract: Hiding data values in privacy-preserving data mining (PPDM) protects information against unauthorised attacks while maintaining analytical data properties. The most popular models are designed for constant data environments. They are usually computationally expensive for large data sizes and have poor real-time performance on frequent data growth. Considering that updates and growth of source data are becoming more and more popular in online environments, a PPDM model that has quick responses on the data updates in real-time is appealing. To increase the speed and response of the singular value decomposition (SVD) based model, we have applied an improved incremental SVD-updating algorithm. The performance and effectiveness of the improved algorithm have been examined on synthetic and real data sets. Experimental results indicate that the introduction of the incremental matrix decomposition produces a significant increase in speed for the SVD-based data value hiding method, better scalability and better real-time performance of the model, thereafter. It also provides potential support for the use of the SVD technique in the online analytical processing for business data analysis.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com