Genetic algorithm for reliability-based design optimisation of composite drive shaft Online publication date: Sat, 31-Jan-2015
by D. Jebakani, T. Paul Robert
International Journal of Industrial and Systems Engineering (IJISE), Vol. 7, No. 2, 2011
Abstract: The laminated composite material is widely used in structural and automotive applications because of its high specific strength and stiffness. However, such material is strongly anisotropic and sensitive to the change in loading conditions. Therefore, it is necessary to consider the effect of such variations by applying the structural reliability theory. In this paper, reliability-based design optimisation methodology for finding the optimal design of composite drive shaft with a specific risk and reliability is presented. The effect of the uncertainties in material and geometric properties is considered to quantify the probability of failure. The application of genetic algorithm to determine the critical design parameters is explored. The reliability of various designs is estimated using Monte Carlo procedure to determine the optimal stacking sequence which meets the target reliability.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com