The recent developments in microwave design Online publication date: Thu, 26-Mar-2015
by Murat Simsek, Qi-Jun Zhang, Humayun Kabir, Yazi Cao, Neslihan Serap Sengor
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 2, No. 2, 2011
Abstract: Artificial neural networks have been used as an important technique in microwave modelling and optimisation. This paper gives an overview and recent developments on the knowledge-based neural modelling techniques in microwave modelling and design. The knowledge-based artificial neural networks are constructed by incorporating the existing knowledge such as empirical formulas, equivalent circuit models and semi-analytical equations in neural network structures. When one of the knowledge-based methods can not provide sufficient accuracy, two of them can be used in the same modelling process. This combination of methods is named hybrid technique. Using knowledge-based techniques requires less training data and has better extrapolation performance than classical neural networks. The advantages of using knowledge-based neural network modelling are demonstrated with microwave device modelling applications.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com