Multi-sensor activation for temporally correlated event monitoring with renewable energy sources Online publication date: Sun, 26-Jun-2011
by Neeraj Jaggi, Koushik Kar
International Journal of Sensor Networks (IJSNET), Vol. 10, No. 1/2, 2011
Abstract: Future sensor networks would comprise sensing devices with energy-harvesting capabilities from renewable energy sources, such as solar power. This paper focuses on design of efficient algorithms for multi-sensor activation to optimise overall event detection probability in presence of uncertainties in event and recharge processes. We formulate the dynamic multi-sensor activation question in a stochastic optimisation framework, and show that a time-invariant threshold policy, which maintains an appropriately chosen number of sensors active at all times, is optimal in absence of temporal correlations. Moreover, the same energy-balancing time-invariant threshold policy approaches optimality in presence of temporal correlations as well, albeit under certain limiting assumptions. We also analyse the class of correlation-dependent threshold policies and derive the range for energy-balancing thresholds. Through simulations, we compare the proposed time-invariant policy with energy-balancing correlation-dependent policies, and observe that although the latter may perform better, the performance difference is rather small in the cases studied.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com