Recursive least-squares estimation in case of interval observation data Online publication date: Tue, 31-Mar-2015
by Hansjorg Kutterer, Ingo Neumann
International Journal of Reliability and Safety (IJRS), Vol. 5, No. 3/4, 2011
Abstract: In the engineering sciences, observation uncertainty often consists of two main types: random variability due to uncontrollable external effects and imprecision due to remaining systematic errors in the data. Interval mathematics is well suited to treat this second type of uncertainty if set-theoretical overestimation is avoided. Overestimation means that the true range of parameter values is only quantified by rough, meaningless outer bounds. If recursively formulated estimation algorithms are used, overestimation becomes a key problem. This occurs in state-space estimation which is relevant in real-time applications and which is essentially based on recursions. Hence, overestimation has to be analysed thoroughly to minimise its impact. In this study, observation imprecision is referred to physically meaningful influence parameters. This allows to reformulate the recursion algorithm yielding an increased efficiency and to rigorously avoid overestimation. In order to illustrate and discuss the theoretical results, a damped harmonic oscillation and the monitoring of a lock are presented as examples.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com