An introduction to models based on Laguerre, Kautz and other related orthonormal functions – part I: linear and uncertain models
by Gustavo H.C. Oliveira, Alex Da Rosa, Ricardo J.G.B. Campello, Jeremias B. Machado, Wagner C. Amaral
International Journal of Modelling, Identification and Control (IJMIC), Vol. 14, No. 1/2, 2011

Abstract: This paper provides an overview of system identification using orthonormal basis function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis functions. The paper is separated in two parts. In this first part, the mathematical foundations of these models as well as their advantages and limitations are discussed within the context of linear and robust system identification. The second part approaches the issues related with non-linear models. The discussions comprise a broad bibliographical survey of the subjects involving linear models within the orthonormal basis functions framework. Theoretical and practical issues regarding the identification of these models are presented and illustrated by means of a case study involving a polymerisation process.

Online publication date: Sat, 21-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com