Coupling of neural network and dispersion models: a novel methodology for air pollution models
by A. Pelliccioni, C. Gariazzo, T. Tirabassi
International Journal of Environment and Pollution (IJEP), Vol. 20, No. 1/2/3/4/5/6, 2003

Abstract: Supervised neural net models and dispersion models are two important approaches for evaluating air pollution concentrations. The authors propose the development of an integrated model, in order to optimise the performances of each methodology. The concentrations evaluated by an air pollution model are coupled with a Neural Net (NN), so as to adjust the influence of important variables on dispersion models (which may produce systematic under- or over-prediction of measured concentrations). In particular, an optimised 3-Layer Perception with error-backpropagation learning rules is used to filter the air pollution concentrations evaluated using an operative analytical model that takes account of the vertical profiles of wind and turbulent diffusivity. The results show good performances of this methodology when applied to the Kincaid dataset.

Online publication date: Mon, 10-May-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com