Correlation of air pollution and meteorological data using neural networks
by Theodora Slini, Kostas Karatzas, Nicolas Moussiopoulos
International Journal of Environment and Pollution (IJEP), Vol. 20, No. 1/2/3/4/5/6, 2003

Abstract: In order to develop an environmental forecasting tool, the Neural Network method of computational intelligence is investigated. For this purpose, hourly and daily time series of CO, NO2 and O3, as well as a variety of meteorological variables are employed in various multi-layer percepton (MLP) models, in order to provide reliable air quality forecasts, using as a test case the city of Athens, Greece. The performance of the two most satisfactory models are presented thoroughly and compared using certain statistical indices. Results verify both the potential and the complicated nature of the method.

Online publication date: Mon, 10-May-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com