Towards developing a human-friendly power assist robot for manipulating heavy objects: special focus on manoeuvrability and object's surface friction Online publication date: Sat, 21-Mar-2015
by S.M. Mizanoor Rahman; Ryojun Ikeura; Haoyong Yu
International Journal of Biomechatronics and Biomedical Robotics (IJBBR), Vol. 1, No. 4, 2011
Abstract: A power assist robot system was developed for manipulating objects in cooperation with human. Weight perception was included in robot dynamics and control. The robot was simulated for different conditions. Optimum manoeuvrability conditions for vertical lifting and horizontal manipulation of objects were determined. Psychophysical relationships between actual and perceived weights were determined, and load forces and motion features were analysed for unimanual and bimanual lifting of objects. Then a novel control scheme was implemented that reduced the excessive load forces and accelerations, and thus improved the system performances for unimanual and bimanual lifts. Motions were also analysed for lowering objects with the robot. A feed-forward friction model was introduced that addressed the effects of friction between human's hand and object's surfaces on weight perception and load force. The findings can be used to develop human-friendly power assist robots for manipulating heavy objects in industries.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomechatronics and Biomedical Robotics (IJBBR):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com