Assessment of grain size and lattice parameters of titanium alloy through electromagnetic emission technique
by Vishal S. Chauhan; Ashok Misra
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 6, No. 6, 2011

Abstract: Effects of variation in grain size and lattice parameters at elevated temperatures on the electromagnetic radiation (EMR) during failure under tension of ASTM B265 Grade 2 titanium have been investigated. The EMR is observed to be anisotropic in nature. The EMR amplitude decreases with increase in grain size. The magnitude of variation depends upon the processing history of specimens. The EMR amplitude decreases exponentially with lattice parameters in titanium while the decrease in EMR frequency is polynomial in nature. The experimental results are in close agreement with the theoretical predications presented in this paper. A comparison with the results reported earlier shows that the nature of EMR responses with lattice parameters is independent of metal crystal structure. These investigations lead to a new technique for the assessment of grain size and lattice parameters in metals.

Online publication date: Mon, 19-Dec-2011

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com