Supplier selection using chance-constrained data envelopment analysis with non-discretionary factors and stochastic data
by Majid Azadi; Reza Farzipoor Saen; Madjid Tavana
International Journal of Industrial and Systems Engineering (IJISE), Vol. 10, No. 2, 2012

Abstract: The changing economic conditions have challenged many organisations to search for more efficient and effective ways to manage their supply chain. During recent years supplier selection decisions have received considerable attention in the supply chain management literature. There are four major decisions that are related to the supplier selection process: what product or services to order, from which suppliers, in what quantities and in which time periods? Data envelopment analysis (DEA) has been successfully used to select the most efficient supplier(s) in a supply chain. In this study, we introduce a novel supplier selection model using chance-constrained DEA with non-discretionary factors and stochastic data. We propose a deterministic equivalent of the stochastic non-discretionary model and convert this deterministic problem into a quadratic programming problem. This quadratic programming problem is then solved using algorithms available for this class of problems. We perform sensitivity analysis on the proposed non-discretionary model and present a case study to demonstrate the applicability of the proposed approach and to exhibit the efficacy of the procedures and algorithms.

Online publication date: Sat, 20-Dec-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com