Large margin classifiers and Random Forests for integrated biological prediction Online publication date: Fri, 05-Dec-2014
by Sheng Liu; Yixin Chen; Dawn Wilkins
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 8, No. 1/2, 2012
Abstract: Incorporating various sources of biological information is important for biological discovery. For example, genes have a multiview representation. They can be represented by features such as sequence length and pairwise similarities. Hence, the types vary from numerical features to categorical features. We propose a large margin Random Forests (RF) classification approach based on RF proximity kernals. Random Forests accommodate mixed data types naturally. The performance on four biological datasets is promising compared with other state of the art methods including Support Vector Machines (SVMs) and RF classifiers. It demonstrates high potential in the discovery of functional roles of biomolecules.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com