Mining classification rules for gene expression data using enhanced quickreduct fuzzy-rough feature selection and ant colony optimisation Online publication date: Fri, 29-Aug-2014
by Chinnanambalam Ponniah Chandran; Gurusamy Arumugam
International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS), Vol. 2, No. 3, 2012
Abstract: In this paper, the mining classification rules for gene expression data of yeast S.Cerevisiae is carried out using enhanced quickreduct fuzzy-rough feature selection (EQRFR-FS) with ant colony optimisation (ACO). Rough sets theory deals with uncertainty and vagueness of an information system in data mining. The ACO algorithms have been applied to combinatorial optimisation problems and data mining classification problems. The analyses are carried out in two phases. In the first phase, the features are extracted from the gene expression data and then feature selection is carried out from the extracted features using EQRFR-FS algorithm. In the second phase, from reduct set the classification rules mining are carried out with ant-miner algorithm. The dataset is obtained from the expression profiles maintained by Brown's group at Stanford University.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Granular Computing, Rough Sets and Intelligent Systems (IJGCRSIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com