Slime mould computes planar shapes
by Andrew Adamatzky
International Journal of Bio-Inspired Computation (IJBIC), Vol. 4, No. 3, 2012

Abstract: Computing a polygon defining a set of planar points is a classical problem of modern computational geometry. In laboratory experiments, we demonstrate that a concave hull, a connected α-shape without holes, of a finite planar set is approximated by slime mould Physarum polycephalum. We represent planar points with sources of long-distance attractants and short-distance repellents and inoculate a piece of plasmodium outside the dataset. The plasmodium moves towards the data and envelops it by pronounced protoplasmic tubes.

Online publication date: Mon, 22-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com