Failure analysis and behaviour of titanium alloy metal matrix composite bolted joints Online publication date: Wed, 07-Jul-2004
by Som R. Soni, Hakan Kilic, Michael Camden, Mark M. Derriso, Scott Cunningham
International Journal of Materials and Product Technology (IJMPT), Vol. 21, No. 1/2/3, 2004
Abstract: Pin-loaded hole coupons with tapered geometry were tested to examine the failure behaviour of titanium alloy metal matrix composite (MMC) bolted joints at room temperature and 650°C. The average failure load at 650°C decreased almost to half of the average failure load at room temperature. Additional tests were also carried out at room temperature to investigate different methods to extend the life of the joint. A polyester film was applied around the hole on one face of the specimen, which consequently changed the failure mode and post-failure response of the specimen. Finite element (FE) analyses were performed to predict the behaviour of titanium MMC bolted joints. Failure loads were predicted by solving a boundary value problem representing a single lap bolted joint. A modified concentric cylinders model (CCM) was employed to predict the effective properties used in the FE and failure analyses. Good agreement was shown between the experimental results and the predictions.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com