Dynamic objectives aggregation methods for evolutionary portfolio optimisation. A computational study Online publication date: Mon, 22-Sep-2014
by Gabriella Dellino; Mariagrazia Fedele; Carlo Meloni
International Journal of Bio-Inspired Computation (IJBIC), Vol. 4, No. 4, 2012
Abstract: This paper proposes a study of different dynamic objectives aggregation methods (DOAMs) in the context of a multi-objective evolutionary approach to portfolio optimisation. Since the incorporation of chaotic rules or behaviour in population-based optimisation algorithms has been shown to possibly enhance their searching ability, this study considers and evaluates also some chaotic rules in the dynamic weights generation process. The ability of the DOAMs to solve the portfolio rebalancing problem is investigated conducting a computational study on a set of instances based on real data. The portfolio model considers a set of realistic constraints and entails the simultaneous optimisation of the risk on portfolio, the expected return and the transaction cost.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com