Correlation maximisation-based discretisation for supervised classification
by Qiusha Zhu; Lin Lin; Mei-Ling Shyu
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 7, No. 1/2, 2012

Abstract: This paper proposes a novel supervised discretisation algorithm based on Correlation Maximisation (CM) using Multiple Correspondence Analysis (MCA). MCA is an effective technique to capture the correlation between multiple variables. For each numeric feature, the proposed discretisation algorithm utilises MCA to measure the correlations between feature intervals/items and classes, and the set of cut-points yielding the maximum correlation is chosen as the discretisation scheme for that feature. Therefore, the discretised feature can not only produce a concise summarisation of the original numeric feature but also provide the maximum correlation information to predict class labels. Experiments are conducted by comparing to seven state-of-the-art supervised discretisation algorithms using six well-known classifiers on 19 UCI data sets. Experimental results demonstrate that the proposed discretisation algorithm can automatically generate a set of features (feature intervals) that produce the best classification results on average.

Online publication date: Wed, 12-Nov-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com