Principal component analysis (PCA)-based approaches for the multi-response optimisation: an issue and the recommendation
by Rina Chakravorty; Susanta Kumar Gauri; Surajit Pal
International Journal of Productivity and Quality Management (IJPQM), Vol. 10, No. 3, 2012

Abstract: One weakness in Taguchi method is that it focuses on optimisation of single response variable only whereas most of the modern manufacturing processes demand for simultaneous optimisation of multiple responses, and some of these responses are often correlated. Recently some principal component analysis (PCA)-based approaches have been proposed in literature which aims at making the Taguchi method useful for optimising correlated multiple responses too. The implicit assumption made in these procedures is that the correlations among the response variables can be taken care by taking into account the correlations among the signal-to-noise ratios of the response variables. This article shows that this assumption may not be true always. Therefore, some corrections are proposed in the computational procedures of PCA-based approaches, which are described taking into consideration weighted principal component and PCA-based grey relational analysis methods. The results of analysis of two sets of past experimental data indicate that the corrected PCA-based approaches result in substantial improvement in the overall optimisation performance.

Online publication date: Fri, 31-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Productivity and Quality Management (IJPQM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com