Topometry optimisation for crashworthiness design using hybrid cellular automata Online publication date: Tue, 23-Apr-2013
by Chandan Mozumder; John E. Renaud; Andrés Tovar
International Journal of Vehicle Design (IJVD), Vol. 60, No. 1/2, 2012
Abstract: An objective in crashworthiness design is to obtain energy-absorbing components. This task has been efficiently undertaken using the Hybrid Cellular Automaton method. This method combines the CA paradigm with nonlinear, dynamic finite element analysis. Lightweight, energy-absorbing topology concepts have been obtained with this approach. This paper furthers the development of the HCA method to an efficient tool for synthesising shell structures using topometry optimisation. The objective is to find the thickness distribution that uniformly distributes the structures internal energy density. This approach addresses problems involving collisions, large displacement and material plastic hardening. The final designs meet manufacturing and performance constraints.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com