Asymptotic analysis of options in a jump-diffusion model with binomial jump size distribution Online publication date: Sat, 26-Jul-2014
by Lamia Benothman; Faouzi Trabelsi
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 4, No. 1, 2013
Abstract: In this paper, we provide an asymptotic analysis of European and American call options in a jump-diffusion model for a single-asset market, where the jump size follows a binomial distribution B(n, p) for n ≥ 1 and p ∈]0, 1[, and the volatility is small compared to the drift terms. An asymptotic formula for the perpetual call option for small volatility is also developed. It is showed that at leading order, the American call option, behaves in the same manner as a perpetual call, except in a boundary layer about the option's expiry date. Next, we apply the obtained asymptotic results to approximate the same options in the Merton's model. Precisely, we approximate the jump size normal distribution by a discrete binomial one for large number n, on the basis of the central limit theorem. Then, we use for small volatility, the binomial asymptotic expansion formulas to approximate European and American call prices, in the Merton's model. Finally, the found expansion formulas for call prices are illustrated graphically. They represent a powerful tool for approximating option prices with a good accuracy. We think that these formulas contribute to the theory of option pricing.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com