Spatiotemporal dynamics of a predator-prey system with Beddington-DeAngelis functional response and the modified Leslie-Gower type dynamics incorporating prey refuge Online publication date: Sat, 26-Jul-2014
by Dawit Melese; Sunita Gakkhar
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 4, No. 1, 2013
Abstract: In this paper, a spatial predator-prey system with Beddington-DeAngelis functional response and the modified Leslie-Gower type dynamics incorporating constant proportion of prey refuge under homogeneous Neumann boundary condition is considered. The qualitative properties, including the persistence property, local and global asymptotic stability of the unique positive homogeneous steady state are discussed. Furthermore, a series of numerical simulations are performed and the results of the numerical simulations reveal that the typical dynamics of population density variation is the formation of isolated groups, i.e., stripe like or spotted or coexistence of both. The results indicate that the effect of the prey refuge for pattern formation is remarkable. More specifically, as the value of the prey refuge constant is increased, the stripe like patterns breaks down and ultimately form spotted like patterns.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com