A novel classification learning framework based on estimation of distribution algorithms
by Jiancong Fan; Qiang Xu; Yongquan Liang
International Journal of Computing Science and Mathematics (IJCSM), Vol. 3, No. 4, 2012

Abstract: Estimation of distribution algorithms (abbr. EDAs) is a relatively new branch of evolutionary algorithms. EDAs replace search operators with the estimation of the distribution of selected individuals + sampling from the population. In an EDAs, this explicit representation of the population is replaced with a probability distribution over the choices available at each position in the vector that represents a population member. In this paper, an estimation of distribution learning framework and the corresponding learning algorithm are proposed and the relevant properties of the framework are analysed on the basis of probability. The framework provides a basis and a principle criterion for designing and analysing evolutionary learning algorithms based on EDAs. The probability is the core tool of EDAs. EDA-based learning algorithms are required to estimate the population distribution by the sample distributions. The learning framework proposed can guide and regulate the design processes of learning algorithms and strategies based on EDAs. The framework involved in relevant learning problems is analysed from the perspectives of probability by properties analysis, proof and verification. The experiment results show that the framework proposed is feasible for realising learning from datasets and has better learning performances than some other relevant evolutionary learning methods.

Online publication date: Sat, 30-Aug-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com