Neuro-leaf spring
by A. Ghazi Zadeh, A. Fahim, M. EI-Gindy
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 7, No. 4, 2000

Abstract: A recurrent neural network is taught to emulate a leaf spring that is typically employed in the suspension system of trucks. Leaf springs are known to have nonlinear and hysteresis behaviour. This makes their mathematical formulation difficult and susceptible to a considerable amount of estimation errors. Analysis of the vehicle's dynamic behaviour is heavily reliant on the accurate determination of the suspension forces. It is shown that the recurrent neural network is able to emulate the leaf spring behaviour very accurately after it is taught with a set of input output data points. In order to generate the teaching data points an analytical model of the leaf spring is used. The performance of the developed neural network emulator is also evaluated in the time and frequency domains and compared to those of the analytical model.

Online publication date: Thu, 16-Sep-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com