Exploitation of 3D stereotactic surface projection for predictive modelling of Alzheimer's disease
by Murat Seckin Ayhan; Ryan G. Benton; Vijay V. Raghavan; Suresh Choubey
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 7, No. 2, 2013

Abstract: Alzheimer's Disease (AD) is one major cause of dementia. Previous studies have indicated that the use of features derived from Positron Emission Tomography (PET) scans lead to more accurate and earlier diagnosis of AD, compared to the traditional approaches that use a combination of clinical assessments. In this study, we compare Naïve Bayes (NB) with variations of Support Vector Machines (SVMs) for the automatic diagnosis of AD. 3D Stereotactic Surface Projection (3D-SSP) is utilised to extract features from PET scans. At the most detailed level, the dimensionality of the feature space is very high. Hence we evaluate the benefits of a correlation-based feature selection method to find a small number of highly relevant features; we also provide an analysis of selected features, which is generally supportive of the literature. However, we have also encountered patterns that may be new and relevant to prediction of the progression of AD.

Online publication date: Mon, 20-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com