RNA secondary structure prediction using conditional random fields model
by Sitthichoke Subpaiboonkit; Chinae Thammarongtham; Robert W. Cutler; Jeerayut Chaijaruwanich
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 7, No. 2, 2013

Abstract: Non-coding RNAs (ncRNAs) have important biological functions in living cells dependent on their conserved secondary structures. Here, we focus on computational RNA secondary structure prediction by exploring primary sequences and complementary base pair interactions using the Conditional Random Fields (CRFs) model, which treats RNA prediction as a sequence labelling problem. Proposing suitable feature extraction from known RNA secondary structures, we developed a feature extraction based on natural RNA's loop and stem characteristics. Our CRFs models can predict the secondary structures of the test RNAs with optimal F-score prediction between 56.61 and 98.20% for different RNA families.

Online publication date: Mon, 20-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com