Predicting transmission of avian influenza A viruses from avian to human by using informative physicochemical properties Online publication date: Mon, 20-Oct-2014
by Jia Wang; Chuang Ma; Zheng Kou; Yan-Hong Zhou; Huai-Lan Liu
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 7, No. 2, 2013
Abstract: Some strains of avian influenza A virus (AIV) can directly transmit from their natural hosts to humans. These avian-to-human transmissions have continuously been reported to cause human deaths worldwide since 1997. Predicting whether AIV strains can transmit from avian to human is valuable for early warning of AIV strains with human pandemic potential. In this study, we constructed a computational model to predict avian-to-human transmission of AIV based on physicochemical properties. Initially, ninety signature positions in the inner protein sequences were extracted with the entropy method. These positions were then encoded with 531 physicochemical features. Subsequently, the optimal subset of these physicochemical features was mined with several feature selection methods. Finally, a support vector machine (SVM) model named A2H was established to integrate the selected optimal features. The experimental results of cross-validation and an independent test show that A2H has the capability of predicting transmission of AIV from avian to human.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com