Enhancing biomedical concept extraction using semantic relationship weights
by Said Bleik; Wei Xiong; Min Song
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 7, No. 3, 2013

Abstract: Scientific publications are often associated with a set of keywords to describe their content. Automating the process of keyword extraction and assignment could be useful in indexing electronic documents and building digital libraries. In this paper we propose a new approach to biomedical Concept Extraction (CE) using semantic features of concept graphs. We represent full-text documents by graphs and map biomedical terms to predefined ontology concepts. We adopt concept relation weights to improve the ranking process of potential key concepts. We perform both objective and human-based subjective evaluations. The results show that using relation weights significantly improves the performance of CE. The results also highlight the subjectivity of the CE procedure as well as of its evaluation.

Online publication date: Fri, 07-Jun-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com