Study on image retrieval system base on multi-objective and multi-instance learning Online publication date: Sat, 11-Oct-2014
by Ke Chen; Zhiping Peng; Wende Ke
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 6, No. 2, 2013
Abstract: In this paper, the multi-instance learning algorithm is improved under the image retrieval framework based on contents, and the improved multi-instance learning algorithm is applied to image retrieval to better handle the ambiguity of the image. In this method, the image is used as the multi-instance bag and is divided into multiple instances by image segmentation algorithm, and then the multi-instance learning is performed with the multi-objective-diverse-density algorithm. The learning results are ordered by image similarity using the vector space model. Finally, relevant feedback is given in accordance with the positive bag and negative bag chosen by the user to provide satisfactory results to the user.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com