Conducting core-sheath polyurethane-PEDOT nanofibres for conducting polymer actuator Online publication date: Thu, 01-Aug-2013
by Jin Kyoung Kwon; Hye Jin Yoo; Jae Whan Cho
International Journal of Nanotechnology (IJNT), Vol. 10, No. 8/9, 2013
Abstract: Conducting core-sheath nanofibres were prepared by the vapour-phase polymerisation of poly(3,4-ethylenedioxy thiophene) (PEDOT) on electrospun polyurethane (PU) nanofibres both with and without incorporating graphene nanoplatelets (GNPs) as the core part. The morphology, mechanical properties, electrical conductivity, and electroactive actuation of the core-sheath nanofibres were investigated. The thickness of the PEDOT-coated layer and the electrical conductivity of the nanofibre webs were controlled by varying polymerisation time. The incorporation of GNPs in the nanofibres significantly increased the breaking stress and modulus, as well as the conductivity of the nanofibres. It was found that the core-sheath PU-PEDOT nanofibre webs were the most effective for enhancing the displacement of a conducting polymer actuator, whereas the GNP-incorporating PU-PEDOT nanofibre webs showed reduced actuator displacement because of a high modulus.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com