A comparative analysis of power demand forecasting with artificial intelligence and traditional approach
by Sadia Zahin; Hasan Habibul Latif; Sanjoy Kumar Paul; Abdullahil Azeem
International Journal of Business Information Systems (IJBIS), Vol. 13, No. 3, 2013

Abstract: Power demand forecasting is a significant factor in the planning and economic and secure operation of modern power system. This research work has compared different forecasting techniques and opted to find out better technique in context of power generation, which varies rapidly from time to time. The dataset has been generated from yearly demand of electricity of Bangladesh for last five years. Year, irrigation season, temperature and rainfall amount have been considered as input parameters where as single output is demand of load in adaptive neuro-fuzzy inference system (ANFIS). Another artificial intelligence technique, artificial neural network (ANN) has been used to validate the output results. The best suited traditional technique for forecasting power generation is seasonal forecasting. Seasonal forecasting is also used to compare with ANFIS and ANN to find out better technique. The result of experiment indicates that ANFIS is superior method to tackle forecasting of power generation from different error measures.

Online publication date: Fri, 27-Sep-2013

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Information Systems (IJBIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com