Non-linear predictive controller for uncertain process modelled by GOBF-Volterra models Online publication date: Sat, 27-Sep-2014
by Kais Bouzrara; Abdelkader Mbarek; Tarek Garna
International Journal of Modelling, Identification and Control (IJMIC), Vol. 19, No. 4, 2013
Abstract: This paper proposes a new approach for synthesising a predictive control for non-linear uncertain process based on a proposed reduced complexity discrete-time Volterra model known as GOBF-Volterra model. This model, provided by expanding each Volterra kernel on independent generalised orthonormal basis functions (GOBF), is efficient for the synthesis of non-linear model-based predictive control (NMBPC) which copes with physical constraints and geometrical constraints due to parameter uncertainties. A quadratic criterion is optimised and a new optimisation algorithm, formulated as a quadratic programming (QP) under linear and non-linear constraints, is proposed. Simulation results on a chemical reactor are presented to illustrate the performance of the proposed NMBPC strategy for uncertain process. This reveals that the stability performance of the resulting closed-loop system depends on the choice of the tuning parameters.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com