Hybrid principal component analysis technique to machine-part grouping problem in cellular manufacturing system Online publication date: Mon, 28-Apr-2014
by Tamal Ghosh; Manojit Chattopadhyay; Pranab K. Dan
International Journal of Advanced Operations Management (IJAOM), Vol. 5, No. 3, 2013
Abstract: This article portrays a hybrid principal component analysis (PCA)-based technique to construct production cells in cellular manufacturing system (CMS). The key problem in CMS is to recognise the machine cells and corresponding part families and subsequently the formation of production cells. A novel approach is considered in this study to systematise a hybrid multivariate clustering technique based on covariance analysis to form the machine cells in CMS. The intended technique is demonstrated in three segments. Firstly, a similarity matrix is developed by exploiting the covariance analysis procedure. In the second stage, the PCA is utilised to identify the potential clusters in CMS with the assistance of eigenvalue and eigenvector computation. In the last stage, an adjustment heuristic is adopted to improve the solution quality and consequently the clustering efficiency. This article states that, the addition of the adjustment heuristic approach into a traditional multivariate PCA-based clustering technique not only enhances the solution quality significantly, but also downgrades the inconsistency of the solutions achieved. The hybrid technique is tested on 24 test datasets available in published articles and it is shown to outperform other published methodologies by enhancing the solution quality on the test problems.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Advanced Operations Management (IJAOM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com