Exergy analysis of a latent storage system combined solar selective coating with nickel nano-particles Online publication date: Mon, 31-Mar-2014
by Hao Liang; Qichang Yang
International Journal of Nanomanufacturing (IJNM), Vol. 9, No. 3/4, 2013
Abstract: Exergy analysis of a latent heat storage system with phase change materials (PCMs) for a flat-plate was investigated. A selectively absorbing surface consists of nickel nano-particles was electrochemically prepared for solar collecting. The eutectic mixture formamide-sodium acetate trihydrate was used as phase change material (PCM), with a melting temperature of 40.5°C and heat of fusion of 255 kJ/kg. Exergy analysis, which is based on the second law of thermodynamics were introduced to evaluate efficiency of the system during the charging period. It was observed that the average energy and exergy efficiency of the system was 29.0% and 78.3%, respectively.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com