Stochastic modelling of 1-D and 2-D terrain profiles using a polynomial chaos approach
by Lin Li; Corina Sandu
International Journal of Vehicle Design (IJVD), Vol. 63, No. 2/3, 2013

Abstract: One fundamental difficulty in understanding the physics of vehicular off-road traction and in predicting vehicle performance is the variability of the terrain profile. These operating conditions are uniquely defined at a given spatial location and a given time. It is not practically feasible to measure them at a sufficiently large number of points to be able to accurately represent the terrain in models, or to use all the data collected to recreate the terrain profile. This renders traditional analysis tools insufficient when dealing with rough terrain. In this study, mathematical tools to quantify the impact of uncertainties in the terrain profile on vehicle mobility are developed. A polynomial chaos approach is used to reconstruct one-dimensional (along longitudinal direction) stationary and non-stationary terrain profiles. Also, an efficient mathematical method based on the Karhunen-Loeve expansion and the approach for 1-D stochastic terrain profile is developed to reconstruct two-dimensional (along longitudinal and lateral directions) terrain profiles. The proposed mathematical methods calculate the autocorrelation of terrain profiles, solve eigenvalues and eigenvectors of the autocorrelation function, and obtain the corresponding orthogonal random variables directly. The original terrain profile is reconstructed by Karhunen-Loeve expansions, requesting a small, limited computational effort, without the need to verify the terrain data for Gaussianity, stationary, and linearity, and without the need to choose the order of the expansion and the corresponding fitting coefficient artificially. Promising simulation results based on experimental data are obtained using the proposed methods. The schemes to choose the number of eigenvalues and eigenvectors are discussed. The proposed mathematical methods can be used to simulate the terrain profile for on-road and off-road vehicle dynamics or robotic applications.

Online publication date: Thu, 16-Oct-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com