Towards effective course-based recommendations for public tenders Online publication date: Sat, 26-Jul-2014
by Frederico Durao; Marcel Pinheiro Caraciolo; Bruno Melo; Silvio Romero de Lemos Meira
International Journal of Knowledge and Web Intelligence (IJKWI), Vol. 4, No. 2/3, 2013
Abstract: In this paper, we propose a recommendation model to assist users find relevant courses for public tenders. The recommendations are computed based on the user study activity at Atepassar.com, a web-based learning environment for public tender candidates. Unlike traditional academic-oriented recommender systems, our approach takes into account crucial information for public tender candidates such as salary offered by public tenders and location where the exams take place. Technically, our recommendations rely on content-based techniques and a location reasoning method in order to provide users with most feasible courses. Results from a real-world dataset indicate reasonable improvement in recommendation quality over compared baseline models - we observed about 11 precision improvement and 12.7% of recall gain over the best model compared - demonstrating the potential of our approach in recommending personalised courses.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Knowledge and Web Intelligence (IJKWI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com