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Abstract: This paper presents exploratory pattern mining techniques for 
describing communities of resources (e.g., images) and for characterising 
locations of interest. We utilise tagging information and collaborative  
geo-reference annotations for characterising resources locations by a set of 
descriptive patterns. The methods are embedded into an interactive approach 
for mining, browsing and visualising a set of patterns. As an exemplary use 
case, we focus on the social photo sharing application Flickr. Utilising publicly 
available real-world data from this platform, we provide a structural evaluation 
of the automatic approach as well as an exemplary case study for demonstrating 
the effectiveness and validity of the interactive approach. 
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1 Introduction 

The emergence of social networks, mobile systems and ubiquitous computing has created 
a number of novel location-aware services and applications. In order to analyse such 
social media environments, pattern mining provides convenient options, e.g., in order to 
identify interesting and relevant relations and resources. Especially in social media 
systems such as Twitter (http://www.twitter.com) or resource sharing systems like Flickr 
(http://www.flickr.com) – with geo-referenced and tagged data – the combination of 
interactive and automatic approaches enables powerful exploratory approaches. 

In this paper, we present a two way perspective on exploring locations, tags, 
resources and their induced relations: First, we aim to describe sets of social media 
resources (e.g., photos) using location-information and tags, which are semantically 
related as well as focused on certain locations. Imagine, for example, browsing the map 
of Germany and taking an overview on the general Berlin/Brandenburg area in terms of 
tag descriptions. Second, we characterise given locations using tagging patterns and 
photos for interactive browsing. A user may click on a map to specify his point of 
interest, for example, and is then provided a set of tags that are specifically used for that 
region. We consider publicly available image data, e.g., from photo management and 
image sharing applications such as Flickr or Picasa (http://www.picasa.com). In our 
setting, each image is tagged by users with several freely chosen tags. Additionally, each 
picture is annotated with a geo-reference (latitude, longitude) that indicates, where the 
image was taken. 

We propose an iterative two step approach for the exploration of locations and 
resources in social media: The first step uses pattern mining techniques (e.g., Atzmueller 
and Mitzlaff, 2011; Atzmueller and Lemmerich, 2009) to automatically generate a 
candidate set of potentially interesting descriptive tags. For a flexible characterisation  
of locations at different levels the search can be adapted by employing different  
location-based target measures for pattern mining. In the second step, a human explores 
this candidate set of patterns and introspects interesting patterns manually by  
browsing and viewing various visualisations. Based on the obtained results, pattern 
mining parameters can be adapted in an exploratory fashion. Additionally, background 
knowledge, e.g., on semantically equivalent tags, can be manually refined and included in 
the process. 

In this way, we obtain an overview on the resources in terms of their location and 
describing tags. Furthermore, we can characterise different regions, areas or specific 
locations in terms of such descriptive information. The resulting patterns can be exploited 
by providing different visualisations and browsing options. Additionally, they can be 
filtered according to different interestingness criteria. We provide exploratory options for 
viewing the social media data on different abstraction levels according to the information 
seeking mantra by Shneiderman (1996): overview first (macroscopic view), browsing 
and zooming (mesoscopic analysis), and details on demand (microscopic focus). The 
presented approach is embedded into the comprehensive pattern mining and subgroup 
analytics environment VIKAMINE (http://www.vikamine.org), see Atzmueller and 
Lemmerich (2012), which was extended with a specialised user interface for handling, 
presenting and visualising geo-spatial information. Furthermore, VIKAMINE includes 
several editors for supporting the attribute construction and refinement steps that can be 
iteratively applied. From a scientific point of view, the tackled problem is interesting as it 
requires the combination of several distinct areas of research: pattern mining, knowledge 
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discovery in social media, community detection, mining (geo-)spatial data, visualisation, 
and interactive data mining. 

The overall contributions of the paper can be summarised as follows: 

1 We adapt and extend pattern mining techniques to the mining of combined  
geo-information and tagging information, focusing on two complementing 
perspectives: 
a first, we propose an approach to identify, describe and characterise closely 

related regions of resources in terms of descriptive information such as tags 
b second, we present a method for characterising specific points of interest. 

2 We propose an incremental approach for including background knowledge about 
related tags and (semantic) tag similarity. This can be utilised to define tag 
hierarchies corresponding to topics. 

3 In order to avoid a bias in the resource collection, we propose a weighting schema 
taking the individual user – resource contributions into account. 

4 For interactive analysis, we provide a set of visualisations for exploration and 
inspection of the set of candidate patterns. 

5 We demonstrate the impact and validity of the presented approach using publicly 
available data from the social photo sharing application Flickr. 

The remainder of the paper is structured as follows: Section 2 discusses related work. 
After that, Section 3 summarises basics of descriptive pattern mining, and provides 
general notions of graphs and community mining measures. Section 4 describes the 
proposed exploratory mining approach. For demonstrating the effectiveness and validity 
of the presented approach, Section 5 features a structural evaluation and analysis of the 
automatic approach, and a case study of the exploratory techniques using publicly 
available data from Flickr. Finally, Section 6 concludes the paper with a summary and 
directions for future research. 

2 Related work 

This paper combines approaches from three distinct research areas, that is, pattern 
mining, mining (geo-)spatial data, and mining social media. There are several variants of 
pattern mining techniques (Novak et al., 2009), e.g., frequent pattern mining (Han et al., 
2007), graph mining approaches (Horváth and Ramon, 2010; Horváth et al., 2006), 
mining association rules (Agrawal and Srikant, 1994; Lakhal and Stumme, 2005) and 
closed representations (Boley et al., 2007, 2010) as well as subgroup discovery (Klösgen, 
1996; Wrobel, 1997; Atzmueller and Puppe, 2006). We extend common pattern mining 
approaches in two directions: first, we adapt community pattern mining to the handling  
of spatial resources, tags and network information. Second, we introduce different 
specialised target concept functions extending typical k-optimal pattern mining 
approaches. 

Atzmueller and Mitzlaff (2011) considered the descriptive mining of user 
communities in order to identify common interests, e.g., for recommending or browsing 
indicators of interests and relevant information/tags. A first approach for the 
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characterisation and description of communities was introduced in Atzmueller et al. 
(2009), focusing on the description of spammers in the social bookmarking system 
BibSonomy. In contrast to the approaches mentioned above, in this paper we focus on 
exploratory pattern mining methods for describing communities, resources and locations. 
We consider a two way perspective on the respective relations: We describe interesting 
sets of resources (e.g., photos) using location-information and tags, but also apply tags, 
patterns and photos for describing locations, e.g., for interactive browsing, extending 
(Lemmerich and Atzmueller, 2011). 

(Geo-)spatial data mining (Koperski et al., 1998) aims to extract new knowledge from 
spatial databases. This includes destination recommenders, e.g., for tourist information 
systems (Ceci et al., 2010), and for geographical topic discovery (Yin et al., 2011). Often 
established problem statements and methods have been transferred to this setting, for 
example, considering association rules (Appice et al., 2003). Similar to those  
methods, we incorporate geo-spatial elements for mining communities, and construct 
distance-based target concepts according to different intuitions. However, for the 
combination of pattern mining and geo-spatial data, we provide a set of visualisations and 
interactive browsing options for a semi-automatic mining approach. 

Regarding mining social media, specifically social image data, there have been 
several approaches, and the problem of generating representative tags for a given set of 
images is an active research topic (cf. Liu, 2011). Sigurbjörnsson and van Zwol (2008) 
also analyse Flickr data and provide a characterisation on how users apply tags and which 
information is contained in the tag assignments. Their approach is embedded into a 
recommendation method for photo tagging, similar to Lindstaedt et al. (2008) who 
analyse different aspects and contexts of the tag and image data. Abbasi et al. (2009) 
present a method to identify landmark photos using tags and social Flickr groups. They 
apply group information and statistical pre-processing of the tags for obtaining interesting 
landmark photos. In contrast to previously proposed techniques for related tasks, see for 
example, Kennedy and Naaman (2008), our approach does not require a separate 
clustering step. Instead, we focus on descriptive patterns in this paper. This allows for the 
flexible adaptation to the preferences of the users, since their interestingness can be 
flexibly tuned by altering the applied quality function and target concept. In contrast to 
the above automatic approaches, we also present and extend different techniques for a 
semi-automatic interactive approach. 

3 Preliminaries 

In the following, we briefly introduce basic notions with respect to graphs and to 
descriptive pattern mining using subgroup discovery. 

3.1 Graphs 

An (undirected) graph G = (V, E) is an ordered pair, consisting of a finite set V 
containing the vertices/nodes, and a set E of edges/connections between the vertices. We 
freely use the term network as a synonym for graph. A weighted graph is a graph  
G = (V, E) together with a function w : E → R+ that assigns a positive weight to each 
edge. We identify a community of nodes as a set of vertices C ⊆ V. 
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The degree d(u) of a node u in a network measures the number of connections it has 
to other nodes. In weighted graphs the strength s(u) is the sum of the weights of all edges 
containing u, i.e., 

( )
{ , }

s( ) : w { , } .
u v E

u u v
∈

= ∑  

The adjacency matrix of a graph is a matrix A ∈ R| V | × | V | such that Au,v = 1 iff {u, v} ∈ E 
for nodes u, v ∈ V. We identify a graph with its according adjacency matrix where 
appropriate. 

For a given graph G = (V, E) and a community C ⊆ V we use the following  
notation: n := | V |, m := | E |, nC := | C |, mC := | {{u, v} ∈ E : u, v ∈ C} | – the number of 
intra-edges of C. 

3.2 Pattern mining 

Next, we briefly summarise the pattern mining methods in the general context of 
descriptive pattern mining [also called supervised descriptive rule induction, see Novak  
et al. (2009)], subgroup discovery for continuous target concepts (Atzmueller and 
Lemmerich, 2009), and descriptive community mining (Atzmueller and Mitzlaff, 2011). 
Like subgroup discovery (Klösgen, 1996), descriptive pattern mining aims at identifying 
patterns, which are interesting with respect to a given target property of interest according 
to a specific quality (interestingness) measure. The top k patterns are then ranked 
according to the given quality measure. The main focus of the applied methods is thus the 
description of the data, that is, of certain communities or subgroups. In our context  
(see Section 4.2), the target property is either given by the quality of a community of 
resources, or specifically constructed using a provided location, i.e., a specific point of 
interest, landmark, or region, identified by geo-coordinates. 

Formally, a database D = (I, A) is given by a set of individuals I and a set of attributes 
A. A selector or basic pattern ja asel =  is a Boolean function I → {0, 1} that is true, iff the 
value of attribute a is equal to aj for the respective individual. The set of all basic  
patterns is denoted by S. A subgroup description or (complex) pattern sd = {sel1,…,sell} 
is then given by a set of basic patterns, which is interpreted as a conjunction, i.e.,  
sd(I) = sel1 ∧…∧ sell, with length(sd) = l. Without loss of generality, we focus on a 
conjunctive pattern language using nominal attribute-value pairs as defined above in this 
paper, since internal disjunctions can also be generated by appropriate attribute-value 
construction methods, if necessary. We call a pattern sd a superpattern (or refinement) of 
a subpattern sds, iff sds ⊂ sd. A subgroup (extension) sgsd := ext(sd) := {i ∈ I | sd(i) = 
true} is the set of all individuals which are covered by the subgroup description sd. As 
search space for subgroup discovery the set of all possible patterns 2S is used, that is, all 
combinations of the basic patterns in S. 

A quality function Q : 2S → R maps every pattern in the search space to a real 
number that reflects the interestingness of a pattern (or the pattern’s extension, 
respectively). The result of a subgroup discovery task is the set of k subgroup 
descriptions res1,…,resk with the highest interestingness according to the quality 
function. While a large number of quality functions has been proposed in literature  
(cf. Geng and Hamilton, 2006), many quality measures trade-off the size | ext(sd) | of a 
subgroup and the deviation t – t0, where t is the average value of a given target concept in 
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the subgroup and t0 the average value of the target concept in the general population. 
Thus, typical quality functions are of the form 

( )0( ) ( ) , [0;1]a
aq sd ext sd t t a= ⋅ − ∈  

For binary target concepts, this includes for example the weighted relative accuracy for 
the size parameter a = 1 or a simplified binomial function, for a = 0.5. 

For descriptive community mining, there are special community quality functions: 
The concept of a community intuitively describes a group C of individuals out of a 
population such that members of C are strongly ‘related’ among each other but sparsely 
‘related’ to individuals outside of C. This notion translates to vertex sets C ⊆ V of a graph 
G = (V, E). For descriptive community mining, we associate a description sdC with C 
such that ext(sdC) = C. A prominent measure to determine the amount of relatedness is 
given by the modularity MOD (Newman, 2004, 2006; Newman and Girvan, 2004) of a 
partitioning of a graph with k communities C1,…,Ck ⊆ V. It focuses on the number of 
edges within a community and compares that with the expected such number given a  
null-model (i.e., a corresponding random graph where the node degrees of G are 
preserved): 

( ),
,

1 d( )d( )MOD ( ), ( ) ,
2 2u v

u v V

u vA δ C u C v
m m∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑  (1) 

where C(i) denotes for i ∈ V the community to which node i belongs. δ(C(u), C(v)) is the 
Kronecker delta symbol that equals 1 if C(u) = C(v), and 0 otherwise. The modularity 
contribution of a single community C in a local context (sub-graph) can then be 
computed (Newman, 2006; Nicosia et al., 2009) as: 

,
,

1 d( )d( )MODL( ) ,
2 2u v

u v C

u vC A
m m∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠∑  

yielding 

2 2
, ,

2 d( )d( ) d( )d( )MODL( ) .
2 4 4

C C

u v C u v C

m u v m u vC
m m m m∈ ∈

= − = −∑ ∑  

For weighted graphs, the modularity measures introduced above can be adapted by 
accumulating the edges’ weights instead of the edges. While the degree of a node is 
replaced by the node’s strength, m, mC and Cm  have to be rewritten as follows: 

( ) ( ) ( )
{ , } { , } , { , } ,

, { , } 1

: w { , } , : w { , } , : w { , } .C C
u v E u v E u v E

u v C u v C

m u v m u v m u v
∈ ∈ ∈

∈ ∩ =

= = =∑ ∑ ∑  

3.3 Algorithms for descriptive pattern mining 

In the following, we briefly summarise two state-of-the-art algorithms that we apply for 
descriptive pattern mining. Both are efficient algorithms based on branch-and-bound 
techniques using optimistic estimates for reducing the pattern search space. 
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For descriptive community mining, we apply the COMODO algorithm (Atzmueller 
and Mitzlaff, 2011). Using extended frequent pattern trees (Atzmueller and Mitzlaff, 
2011), COMODO conducts an exhaustive search by traversing a representation of  
the solution space compiled into a community pattern tree (CP-tree). The CP-tree is a 
compact version of the database D, that also contains relevant information about the 
graph structure. Using this tree, the patterns can be efficiently computed using only the 
information contained in the tree. Alltogether, the algorithm requires only two passes 
through the generated graph dataset. For more details, we refer to Atzmueller and 
Mitzlaff (2011). 

Additionally, we apply the SD-Map* algorithm (Atzmueller and Lemmerich, 2009) 
for location description in terms of tags. SD-Map* is based on the efficient FP-growth 
(Han et al., 2000) algorithm for mining frequent patterns. FP-growth applies a divide  
and conquer method, first mining frequent patterns containing one selector and  
then recursively mining patterns of size 1 conditioned on the occurrence of a (prefix)  
1-selector. SD-Map* utilises the FP-tree structure built in one database pass to efficiently 
compute quality functions for all subgroups. Furthermore, SD-Map* applies pruning 
strategies by utilising optimistic estimates of subgroup qualities. 

Both COMODO and SD-Map* can apply tight optimistic estimates for pruning the 
search space by orders of magnitude. This allows for an efficient (interactive) mining 
process, especially for the quality functions applied in the scope of this paper (cf. 
Atzmueller and Mitzlaff, 2011; Atzmueller and Lemmerich, 2009). 

4 Exploratory pattern mining on social media 

In the sections below, we present our approach for exploratory pattern mining on social 
media: In an interactive and iterative process, we first utilise pattern mining techniques to 
generate a candidate set of interesting patterns. These candidate patterns are then 
presented to the user, who can refine the obtained patterns, visualise the patterns and 
dependencies between these, and adapt parameters for candidate generation in a 
subsequent iteration. For generating candidate patterns we propose two methods. The 
first method is based on location-aware descriptive community mining (e.g., for browsing 
the Berlin/Brandenburg area on a the map of Germany), the second method focuses on 
identifying characterisations for pre-specified locations (e.g., when clicking on a 
currently unknown location in the vicinity of the city of Berlin). Thus, we tackle the 
location-image relation continuum from two opposite but complementing directions. 

4.1 Location-aware descriptive community mining 

In the following, we present an approach for identifying characteristic communities for 
sets of resources based on their descriptions, e.g., in terms of tags, and information about 
their geo-location. In this way, we mine a set of descriptive patterns for larger areas, 
which can also be restricted to certain regions of interest. For example, in an interactive 
browsing approach, the user could select the larger area of Berlin in Germany, for closer 
inspection of the resulting description, which are concentrated in that area. 

For mining location-aware descriptive communities of resources, a community is 
intuitively defined as a set of nodes that has more and/or better links between its 
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members compared to the rest of the network. In an intuitive sense, community mining is 
thus concerned with the identification of dense (cohesive) subgroups (Wasserman and 
Faust, 1994). Hence, subgroups and communities are rather similar, and we will use the 
terms interchangeably. Intuitively, we aim at discovering semantically similar resources 
(photos) which are close together and thus describe certain points of interest well. In the 
following, we first provide an overview on the proposed approach, before we describe 
how to generate the used data representation, merging a graph structure with descriptive 
information. 

4.1.1 Descriptive community mining on location-resource data 

For the location-aware community mining approach, we focus on location-resource data, 
e.g., photo resources, to which descriptive tags and geo-location information are 
assigned. Using this data, we can construct a graph G based on the similarity between  
the nodes and the location information connecting the different nodes (resources),  
e.g., photos that are taken in close proximity. Additionally, we enrich this graph  
using the descriptive information of the resources as described in the next section. The 
construction of the graph is performed according to the semantic similarity of the 
description of the nodes (resources); in our case, we consider the set of tags assigned to a 
photo for computing the similarity between photos. Additionally, we consider the 
collective relevance of a photo according to the number of views of the respective 
resource. 

Overall, this approach is able to discover sets of communities described by sets of 
tags, respectively. For example, we could discover a community described by the tags 
museum, daniel liebeskind, and architecture corresponding to the location of the jewish 
museum in Berlin, Germany. 

The nodes (resources) of these communities are given by photos which are 
semantically related and which are close together; for example, they could describe the 
jewish museum as a point of interest. The information contained in these communities 
provides then for interesting points, enabling for example exploratory browsing options. 
In this way, location and descriptive information can be presented at the same time. So, 
technically our goal is to discover the k best communities in a graph G, that can be 
described by the attributes of their nodes and that maximise a given community 
evaluation function. A bird’s eye view of the approach is sketched in Figure 1. 

Figure 1 Overview on the applied descriptive community mining approach (see online version 
for colours) 
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For the description of the communities, we require a database D containing a record for 
each graph node; in our Flickr example, a data record corresponds to a photo and contains 
the set of tags for this photo as well as the location (GPS coordinate) where the image 
was taken. Given a dataset of resources, tags and assigned geo-locations we can then 
create a location-resource graph using semantic similarity of resources and their distances 
as described below. The result of the mining process is a set of the k best community 
patterns characterising specific subsets of the resources, e.g., patterns given in terms  
of tags describing a set of photos. Intuitively, communities are densely connected  
sub-graphs. Therefore, we consider only node sets without isolated nodes as candidates 
for the communities. These top k patterns in the result set are selected according to the 
given evaluation function. For exploratory mining, introspection, and refinement, a 
pattern can always be mapped to its extension, i.e., a set of resources (photos). This 
enables a direct visualisation and browsing option, for example, by presenting the 
patterns together with their extensions being shown on a map. 

4.1.2 Location – resource network construction 

As outlined above, we need to pre-process the data in order to construct a consolidated 
data representation for capturing location – resource (photo) relations. For community 
mining, we aim to obtain a network annotated with descriptive information. For that, we 
first construct a graph G containing the resources as nodes of the graph. 

While it is quite natural to represent the resources by nodes in the graph and to assign 
the resource properties, e.g., tags, to the respective nodes, there are different options for 
creating the edges between these nodes. An edge is created between two nodes, if the 
respective resources are closely related, according to their semantic closeness. In our 
case, we base this decision on the semantic similarity using the applied tagging 
information. Additionally, we assign a weight to an edge denoting the locational 
closeness of the respective resources: This weight is computed according to the distance 
between the respective locations, such that the closer the location the higher the weight. 

For a more convenient notation, we introduce the function d(u, v) to compute the 
distance between the nodes u and v according to their assigned geo-location, for which 
the distance in km on the earth surface of two points u = (latu, longu) and v = (latv, longv) 
given latitudes and longitudes can be computed by: 

( ) ( ) ( ) ( ) ( )( )( , ) arccos sin sin cos cos cos ,e u v u v v ud u v r lat lat lat lat long long= + −  

where re is the earth radius in km. 
For the derivation of an edge between two nodes u and v, we compute the semantic 

closeness using the descriptive information assigned to the resources, i.e., using the 
tagging information of the considered photos. There are a number of similarity  
(or distance) functions for computing semantic closeness for tagging data (Markines  
et al., 2009; Cattuto et al., 2008). In our case, we opted for a simple but easily 
interpretable measure. We selected the jaccard coefficient (Cattuto et al., 2008) which is 
defined as follows: 

( ), ,u v
u v

u v

T Tjaccard T T
T T

∩
=

∪
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where Tu ⊆ S, Tv ⊆ S are the sets of tags (basic patterns, as defined above), which are 
assigned to u, v respectively. So, if the semantic similarity between the nodes u and v is 
larger than a certain threshold τs, i.e., jaccard(u, v) ≥ τs, then we create an edge in the 
graph between u and v. Additionally, we construct weights for the potential edges 
according to different weighting strategies discussed below. If the weight of a potential 
edge is 0, then we skip this edge, that is, the edge is not created at all. 

In order to support different analysis options and analysis ranges, i.e., macroscopic, 
mesoscopic or microscopic view, we consider different weighting options. This enables 
the exclusion of outliers, i.e., images that are not relevant for the regions of interest. 

Continuous distance weight 

For deriving a weight w({u, v}) based on the ‘raw’ continuous distances between u and v, 
we can just derive it inversely to the distance, i.e., 

( ) 1{ , } min 1, .
( , )

w u v
d u v

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The advantage of this simple approach is the fact that it is parameter free – no parameter 
needs to be determined by the user. However, this yields also disadvantages: while it 
provides a broad macroscopic overview, it is rather unfocused. As we will see below, it 
can be applied for a macroscopic view, i.e., as a first overview on the set of interesting 
patterns. 

Neighbourhood distance weight 

For the neighbourhood distance weight we create an edge between two nodes, if the 
spatial distance between the resources denoted by the respective nodes is smaller than a 
certain threshold dmax. This threshold can be specified by the user and allows a 
convenient tuning of the analysis results as discussed below. Basically, the value serves 
as a distance cutoff. Using the maximal distance threshold dmax we obtain a weight 

( ) max1, if ( , )
{ , } ,

0, otherwise
d u v d

w u v
<⎧

= ⎨
⎩

 

where distance(u, v) computes the distance between the nodes u and v. It is easy to see 
that this approach is sensitive to the selection of the parameter dmax. If dmax is too large 
then the analysis will not be too focused; if dmax is too small then we will consider only 
regions corresponding to very small components of the network. 

Constructing the network dataset 

Finally, using the given graph G and the database D containing the nodes’ descriptive 
information, we build a new dataset focusing on the edges of the graph G: each data 
record in the new dataset represents an (undirected) edge between two nodes. The 
attribute values of each such data record are the common attributes of the edge’s two 
nodes. The rationale behind storing only the common attributes is the observation, that an 
edge can only belong to a community described by a certain attribute value, if this 
respective attribute value is the same for both nodes of that edge. 
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Figure 2 The proposed weighting options continuous distance weight (continuous/weight) and 
neighbourhood distance weight (neighbourhood/weight) (with different scaling factors) 
with dmax = 5 km 

 

  

In our Flickr example, we consider two photos r1 and r2 with tags t1, t2, and t3 and t1, t3, 
and t4 respectively. If r1 is connected to r2, then the transformed data would contain an 
edge e = (r1, r2) with the tags t1 and t3 as description. The edge is then represented in the 
created dataset by a single data record, using the tagging information for the edge as 
attribute values. 

Each such data record also stores the two nodes of the respective edge and their 
degrees in G to have them available during the evaluation of the quality function q. As 
described above, we can then directly calculate the given community quality measure. 

We apply the efficient COMODO algorithm (Atzmueller and Mitzlaff, 2011)  
for descriptive community mining using the pattern mining techniques introduced in 
Section 3.2, especially focusing on the modularity quality function. Utilising this 
algorithm, the presented approach computes a set of communities representing sets of 
resources (images) that share a similar spatial distribution and are semantically close. In 
contrast to naive clustering approaches including only tags or distances, we thus enable a 
much more sophisticated approach: We include semantic information for determining if 
images are close enough in addition to their respective locations. In this way, we can 
easily exclude outliers that could affect the clustering results. Furthermore, we propose 
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flexible weighting options for the resources that can be tuned according to the analysis 
goals. 

4.2 Location-based profile generation of social image media 

In this section, we propose an approach for determining descriptions of certain locations 
by applying pattern mining. It is important to note, that we now focus on describing 
specific locations, instead of considering resource communities for discovering locations 
as above. 

The most critical issue for formulating the location-based tag mining problem as a 
pattern mining task is how to construct a proper target concept capturing the locational 
interestingness. Therefore, we propose three approaches based on similar principles as 
discussed above concerning the weighting strategies. Based on the distance to the 
location of interest we aim at minimising a given quality function. Thus, smaller  
values for the target concept indicate proximity to the location of interest, i.e., better 
descriptions according to the characterisation task. We apply subgroup discovery for 
descriptive pattern mining utilising the tagging information. In contrast to clustering 
approaches that utilise only tagging or distance information, we are able to include both 
into the mining process: the approach below guarantees to identify the k-best patterns for 
a given interestingness measure – which are formulated using the distance to a certain 
point of interest. 

4.2.1 Target concept construction 

In the following, we propose three different approaches: using the continuous distance, a 
parametrised neighbourhood function, and a fuzzified neighbourhood function. 

Continuous target distance 

As the first approach, we could use the ‘raw’ continuous distance of an image to the point 
of interest as a numeric target property. As discussed above, given latitudes and 
longitudes the distance on the earth surface of any point p = (latp, longp) to the specified 
point of interest c = (latc, longc) can be computed by: 

( ) ( ) ( ) ( ) ( )( )( ) arccos sin sin cos cos cos ,e p c p c c pd p r lat lat lat lat long long= + −  

where re is the earth radius. 
Using the continuous target distance as the numeric target concept, the task is to 

identify patterns, for which the average distance to the point of interest is relatively small. 
For example, the target concept for an interesting pattern could be described as: “pictures 
with this tag are on average 25 km from the specified point of interest, but the average 
distance for all pictures to the point of interest is 455 km”. 

The advantages of using the numeric target concept is that it is parameter-free and can 
be easily interpreted by humans. However, it is unable to find tags, which are specific to 
more than one location. For example, for the location of the Berlin olympic stadium the 
tag ‘olympic’ could be regarded as specific for this location. However, if considering 
other olympic stadiums (e.g., in Munich) the average distance to Berlin is quite large for 
the tag ‘olympic’. Therefore, using the continuous weighting option, images in both 
locations tagged with ‘olympic’ would be included but the image for the olympic stadium 
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in Munich would be assigned a smaller weight and therefore decrease the interestingness 
of the subgroup. 

Neighbourhood target distance 

In order to address a better customisability according to the requirements of the user, we 
propose a second distance function based on the concept of a close neighbourhood: The 
neighbourhood distance requires a maximum distance dmax to the location of interest. 
Then, the target concept is given by: 

max0, if ( )
( )

1, otherwise
d p d

neighbour p
≤⎧

= ⎨
⎩

 

Tags are then considered as interesting, if they occur relatively more often in the 
neighbourhood than in the total population. For example, the target concept for an 
interesting pattern in this case could be described as: “while only 1% of all pictures are in 
the neighbourhood of the specified point of interest, 33% for pictures with tag x are in 
this neighbourhood”. The disadvantage of this approach is however, that it is strongly 
dependent on the chosen parameter dmax. If this parameter is too large, then the pattern 
mining step will not return tags specific for the point of interest, but for the surrounding 
region. On the other hand, if dmax is too small, then the number of instances in the 
respective area is very low and thus can easily be influenced by noise. 

Fuzzified target distance 

The third approach considers a fuzzy variant of the second approach: Instead of a  
single distance dmax we define a minimum distance dlmax and a maximum distance  
dumax for our neighbourhood. Images with a distance smaller than dlmax are then  
assigned to the neighbourhood completely but only partially for distances between dlmax 
and dumax. 

For the transition region between dlmax and dumax any strictly monotone function could 
be used. In this paper, we concentrate on the most simple variant, that is, a linear function 
(possible alternatives include sigmoid-functions like the generalised logistic curve): 

max

max
max max

max max

0, if ( )
( )( ) , if ( ) and ( )

1, otherwise

l

l
l u

u l

d p d
d p dfuzzy p d p d d p d
d d

≤⎧
⎪ −⎪= > <⎨ −⎪
⎪⎩

 

In this way, we require the selection of two parameters; however, using such soft 
boundaries the results are less sensible to slight variations of the chosen parameters. 
Thus, we achieve a smooth transition between instances within or outside the chosen 
neighbourhood. Additionally, the selection can often be conveniently supported, e.g., by 
using a map visualisation. 

Figure 3 depicts the described options: the fuzzy function can be regarded as a 
compromise between the other two function. It combines the steps for the neighbourhood 
function with a linear part that reflects the common distance function. 
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Figure 3 The three proposed distance functions d(p), neighbour(p) with a threshold of distmax = 5 
and fuzzy(p) with thresholds d– = 3 and d+ = 7 as a function over d(p) (see online 
version for colours) 

 

  

Note: It can be observed, that d(p) is (obviously) linear, neighbour(p) is a step function, 
and fuzzy(p) combines both properties in different sections. 

4.2.2 Avoiding user bias: user-resource weighting 

So far, in the approaches described above, all images are treated as equally important. 
However, due to the common power law distribution between users and resources 
(images) in social media systems, only a few but very active users contribute a substantial 
part of the data. Since images from a specific user tend to be concentrated on certain 
locations and users also often apply a specific vocabulary, this can induce a bias towards 
the vocabulary of these active users. As an extreme example, consider a single ‘power 
user’, who shared hundreds of pictures of a specific event at one location and tags all 
photos of this event with a unique term. This term could then be considered as very 
important for that location, although the tag is not commonly used by the overall user 
base. 

One possibility to solve this issue could be to utilise an interestingness measure that 
also incorporates the user count. That is, one could extend the standard quality function 
given above by adding a term, that reflects the number of different users that own a 
picture in the evaluated subgroup. Such an extended quality function could be defined as 
qa(sd) = | ext(sd) |a · (t – t0) · | u(sd) |, where | u(sd) | is the user count for images in the 
respective subgroup. Unfortunately, such interestingness measures are not supported by 
efficient exhaustive algorithms for subgroup discovery, e.g., SD-Map* (Atzmueller and 
Lemmerich, 2009) or BSD (Lemmerich et al., 2010). On the other hand, more basic 
algorithms, for example exhaustive depth-first search without a specialised data structure 
scale not very well for the problem setting of this paper, with thousands of tags as 
descriptions and possibly millions of instances. 

Therefore, we propose to apply a slightly different approach to reduce user bias in our 
application. We assume that a single picture might be overall less important, if a user 
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shared a large amount of images. This is implemented by applying an instance weight for 
each resource, that is, for each image in our application. Thus, when generating statistics 
for a subgroup, the overall count and the target value, which is added, if the respective 
image i is part of this subgroup, is multiplied by the corresponding weight w(i). The 
weight is smaller, if more pictures are contributed by the owner of the image. For our 
experiments, we utilised the weighting function 

{ }( )
1( ) .

|
w i

j j is contributed by the user that contributed i
=  

Instance weighting is supported by SD-Map* as well as many other important subgroup 
discovery algorithms, since it is also applied in pattern set mining approaches such as 
weighted covering (cf. Lavrac et al., 2004). 

4.3 Interactive exploration 

The result of the two methods outlined above, the location-guided descriptive community 
mining approach, and the location-aware profile generation technique results in a set of 
patterns, i.e., communities according to interesting (spatially-oriented) topics and 
descriptions of specified locations. These candidate patterns then need to be assessed by 
the user. Background knowledge for organising and refining the descriptive information 
is usually helpful (cf. Atzmueller et al., 2005). In the following, we first describe the 
options for including background knowledge for semi-automatic attribute construction. 
After that, we describe the different visualisation options. 

4.3.1 Semi-automatic attribute construction 

Since tags can be freely chosen by the users, often different tags are used for the same 
concept or (semantically) similar concepts. For an improved analysis such tags should be 
combined in a single new meta-tag or topic. To provide such knowledge to the system we 
propose to apply a semi-automatic approach: In a pre-processing step, we apply an 
automatic technique, e.g., a LDA-based approach [latent dirichlet allocation (Blei et al., 
2003)], for generating topic proposals. In this way, we efficiently build interpretable tag 
clusters, i.e., for obtaining descriptive topic sets. The LDA method itself builds topics 
capturing semantically similar tags and thus helps to inhibit the problem of synonyms, 
semantic hierarchies, etc. 

In a subsequent refinement step, the set of proposed topics is tuned and refined by the 
user. The refinement can be performed by editing a text document using dashtrees 
(Reutelshoefer et al., 2010) as a simple intuitive syntax for defining taxonomic structures, 
see Figure 4 for an example. For each parent node in the tree a new attribute (topic, meta 
tag) is constructed in the system, that is set to true for a single instance, iff at least one of 
the attributes identified by a child node is true in this instance. In this way, hierarchical 
relations can be effectively modelled. 
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Figure 4 Editor for specifying background knowledge (tag hierarchies) in textual form, 
implemented in the VIKAMINE system (http://www.vikamine.org) (see online version 
for colours) 

 

Notes: The tag hierarchies can be generated, e.g., by LDA-based approaches, and can 
then be refined by the user manually. For example, the new attribute cemetery* is 
constructed that is true, iff the respective image has been tagged by any of the tags 
beyond (cemetery, friedhof, grave, cemeteries, cementerios, cimiteri, graves, 
friedhöfe, gräber). 

4.3.2 Visualisation 

The proposed approaches for location-aware mining are formulated as pattern mining 
tasks. While such tasks can generate candidate patterns, often only manual inspection by 
human experts can reveal the most informative patterns. In many cases, the 
interestingness of images and locations is subjective and dependent on prior knowledge. 

As a simple example, if you knowingly choose a point of interest in the city of Berlin, 
the information, that the tag ‘berlin’ is often used there, will not add much knowledge. 
However, if a point is chosen arbitrarily on the map without any information about the 
location, then the information that this tag is used frequently in that area is supposedly 
rather interesting. Therefore, we consider possibilities to interactively explore, analyse 
and visualise the candidate patterns. We consider three kinds of visualisations: 

1 For the exploration of location-resource relations specialised visualisation methods 
can be exploited that focus on the spatial information. These are especially relevant 
for browsing and inspecting patterns for a region or specific points of interest. 
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a The tag-resource map visualises the spatial distribution of tags on a dragable  
and zoomable map. Figure 5 shows an example. Each picture for a specific 
pattern is represented by a marker on the map. Since for one pattern easily 
several thousand pictures could apply, we recommend to limit the number of 
displayed markers. In our case study (see Section 5) we chose a sample of at 
most 1,000 markers. In a variant of this visualisation also the distribution of sets 
of tags can be displayed on a single map in order to compare their distributions, 
see Figure 5. Furthermore, this view also allows for the characterisation of 
selected areas and regions by browsing interesting tag sets identified by mining 
interesting communities. Overall, this view allows for a quick and intuitive 
overview on which tag is used for images at which location. 

b The exemplification view displays sample images for the currently displayed  
tag. The view can be filtered with respect to a set of pattern. This is especially 
important, since pattern exemplification has shown to be essential for many 
applications (e.g., Atzmueller and Puppe, 2008) and can be applied for 
characterising both subgroups and communities. Using this view, the overall 
application can be used to not only browse and explore the used tags with 
respect to their geo-spatial distribution, but also allows for interactive browsing 
of the images itself. Since there are possibly too many pictures described by a 
set of tags to be displayed at once, we propose to select the shown images also 
with respect to their popularity, i.e., the number of views of the images. 

2 For a detailed exploration of the mined profiles and their descriptions given by tag 
sets, we can utilise various established techniques for interactive pattern mining and 
subgroup analytics (cf. Novak et al., 2009; Atzmueller and Lemmerich, 2012; 
Atzmueller and Puppe, 2005). These user interfaces include for example: 
a The zoomtable allows for interactive browsing of tag distributions considering a 

currently selected pattern. For numeric targets, it shows the distribution of tags 
concerning the currently active pattern. For the binary ‘neighbour’ target 
concept, it shows more details within the zoom bars, e.g., showing the most 
interesting factors (tags) for the current pattern and target concept. Clicking  
on a non-selected tag in the zoomtable adds this tag to the currently selected 

 combination of tags, clicking on an already selected tag removes it from this 
collections. Thus, the zoomtable allows for interactive exploration of tag 
combinations. For a more detailed description of this visualisation, we refer to 
Atzmueller and Puppe (2005). Figure 6 shows an exemplary view on a set of 
tags. 

b The nt-plot compares the size and target concept characteristics of many 
different patterns, see Figure 8 for an example. In this ROC-space related plot 
(e.g., Flach, 2010), each pattern is represented by a single point in two 
dimensional space. The position on the x-axis denotes the size of the subgroup, 
that is, the number of pictures covered by the respective tags. The position on 
the y-axis describes the value of the target concept for the respective pattern. 
Thus, a pattern with a high frequency that is not specific for the target location is 
displayed on the lower right corner of the plot, while a very specific tag, which 
was not frequently used is displayed on the upper left corner. This visualisation 
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is especially suited to compare the statistical properties for a large amount of 
patterns. 

c The specialisation graph is used to show the dependencies between tags  
(cf. Klösgen and Lauer, 2002). In this graph, each pattern is visualised by a  
node represented by a two-part bar. The total length of these bars represents the 
number of cases covered by this pattern, while the ratio between the two parts of 
the bar represent the value/share of the target concept within the extension of the 
pattern. Generalisation relations between patterns are depicted by directed edges 
from more general to more specific patterns. For example, the patterns fluss and 
(fluss ∧ elbe) are connected by an edge pointing at the latter pattern. Figure 7 
shows an example of an specialisation graph. 

3 Furthermore, we can apply ‘low-level’ visualisations for the tag sets and patterns that 
are mainly used for introspection of candidate patterns, providing a very specific 
level of detail. Typical visualisations include the contingency table, pie charts, and 
box plots. A short recent overview on those visualisation techniques including a 
discussion of usefulness, correctness and intuitiveness is provided in Novak et al. 
(2009). An especially important visualisation of this category proved to be a distance 
histogram, cf. Figure 9 for an example. This histogram shows on the x-axis the 
distances d(p) from the location of interest and on the y-axis the number of images 
with the specified tag(s) at that distance. 

In an iterative approach, the user obtains new insights on the data and can then enter this 
knowledge, e.g., on different tags describing the same concept, into the system, see 
Section 4.3.1 or adapt the automatic candidate generation accordingly. The proposed 
features were implemented as a plugin for the interactive pattern mining and subgroup 
analytics environment VIKAMINE. For incorporating the traditional plots the 
VIKAMINE R-Plugin was used as a bridge to the R (http:/www.r-project.org) language 
for statistical computing. 

Figure 5 Example tag-resource visualisation (see online version for colours) 

 

Note: Pictures with tag ‘holocaust’ are marked with an red ‘A’, while pictures for the tag 
‘brandenburgertor’ are marked with a green ‘B’. 
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Figure 6 The zoomtable displaying a set of exemplary tags (see online version for colours) 

 

Notes: The rows show the distributions of the individual tags, i.e., a ‘t’ if the tag occurs in 
the dataset. Green markings show that adding the tag to the current combination of 
tags will increase the share of images that are geographically near the selected 
target location. 

Figure 7 An exemplary specialisation graph showing the generalisations of the pattern 
hansestadt ∧ fluss ∧ elbe 

 

5 Case study: mining Flickr 

In the following, we describe an exemplary application of the presented techniques using 
publicly available data from the resource sharing system Flickr. We collected those 
images that were taken in 2010 and have a geo-tag within Germany resulting in about  
1.1 million images. In the crawling process, we ensured that the crawled images had been 
available for at least half a year – in order to have a chance for a high view count for each 
of the images. 

Below, we start with a structural analysis and evaluation of the automatic method for 
mining resource communities, comparing the presented approach to state-of-the-art 
algorithms. After that, we focus on two application scenarios of the complete exploratory 
approach: We first describe how to discover interesting locations using descriptive 
community mining. Second, we show how to characterise locations. For both approaches, 
we provide an assessment using exemplary results in the respective case study context. 
The proposed approach includes iterative and incremental steps in order to incorporate 
subjective views of the user which are fundamental for supporting a final evaluation of 
the mined results by the user. For the dataset we considered all tags that were used at 
least 100 times. This resulted in about 11,000 tags. 
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Figure 8 An exemplary nt-plot for the location Brandenburgertor, for tags with a maximum 
distance of 5 km (see online version for colours) 

 

Notes: Tags that were used more often are shown on the right side of the diagram,  
for example, ‘streetart’ (16), ‘graffiti’ (8), or ‘urban’ (18). Tags that are very 
specific for the given target concept, that is, they appear almost only within a  
5 km area of the Berlin Brandenburger Tor, are displayed at the top of the 
diagram. For example, tags such as ‘heinrichböllstiftung’ (10), ‘alexanderplatz’ 
(1), or ‘potsdamerplatz’ (14) are very specific (and interesting) for the specified 
location. 

5.1 Structural analysis 

For a first analysis, we consider structural properties of the communities discovered by 
the automatic approach. These communities are candidate patterns in the interactive 
approach – as hypotheses. Therefore, a solid basis provided by the automatic methods 
provides the foundation of the whole process. 

For the analysis, we constructed different networks using different minimal view 
count thresholds (τcount) for selecting relevant resources, and different minimal semantic 
similarity thresholds (τsim) for constructing the network. We applied the weighting 
strategies discussed above. Table 1 and 2 depict the properties of the networks including 
the average node degrees, number of nodes, number of edges, diameter, density and 
cluster coefficient of the respective network. 
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Table 1 Different networks for the continuous distance weighting option, with different 
minimal viewcount and similarity thresholds 

τcount τsim avg(deg) #nodes #edges d density C 
1,000 0.3 57.42 2,160 62,009 18 0.030 0.840 
1,000 0.5 56.95 1,482 42,203 6 0.040 0.804 
1,000 0.8 43.53 769 16,739 6 0.060 0.580 
500 0.3 68.78 6,858 235,835 27 0.010 0.751 
500 0.5 47.64 4,929 117,403 22 0.010 0.770 
500 0.8 35.52 2,309 41,005 7 0.015 0.534 
200 0.3 89.17 27,419 1,222,457 26 0.003 0.772 
200 0.5 63.48 20,846 661,653 32 0.003 0.802 
200 0.8 36.75 10,959 201,393 12 0.003 0.520 

Note: The table shows the average node degree (avg(deg)), the number of nodes 
(#nodes), the number of edges (#edges), the diameter (d), the density of the graph 
(density) and its cluster coefficient (C). 

For the different networks, we applied the COMODO algorithm as described above 
searching for 100 best patterns (k = 100). In order to assess the structural validity of the 
proposed approach, we compared our approach to prominent approaches for detecting 
overlapping communities. We considered the MOSES and the COPRA algorithms, see 
McDaid and Hurley (2010) and Gregory (2009) respectively, as a reference. In these 
experiments, we required a minimal community size of at least ten nodes. Since MOSES 
and COPRA do not accept a minimum size as input, we applied a post-processing step  
for the their discovered communities and filtered all communities below that size. 
Additionally, for the COMODO algorithm we applied a minimal improvement filter (cf. 
Bayardo et al., 2000), for the community patterns, and pruned all specialisations for 
which the absolute difference to the quality of their parent patterns was smaller than 0.01. 
Table 2 Different networks for the neighbourhood distance weighting option, with a distance 

threshold of 1 km and different minimal viewcount and similarity thresholds 

τcount τsim avg(deg) #nodes #edges d density C 
1,000 0.3 26.43 1,015 13,413 9 0.030 0.03 
1,000 0.5 30.73 728 11,186 4 0.040 0.027 
1,000 0.8 29.42 359 5,280 4 0.080 0.005 
500 0.3 30.27 2,987 45,207 9 0.010 0.140 
500 0.5 24.92 1,948 24,271 7 0.010 0.180 
500 0.8 22.36 923 10,317 4 0.020 0.130 
200 0.3 30.94 14,106 218,187 26 0.003 0.390 
200 0.5 29.92 9,829 147,055 11 0.003 0.350 
200 0.8 18.44 4,959 45,721 9 0.004 0.285 

Note: The table shows the average node degree (avg(deg)), the number of nodes 
(#nodes), the number of edges (#edges), the diameter (d), the density of the graph 
(density) and its cluster coefficient (C). 

Tables 3 to 6 show exemplary results for the networks in Tables 1 to 2. In addition to the 
number of the discovered communities, we include the respective sizes for a first 
overview of the properties of the communities (and induced sub-graphs). However, for a 
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comprehensive assessment, they need to be inspected with some insight (e.g., Schaeffer, 
2007). Therefore, we also evaluated the obtained communities using the significance test 
described in Koyuturk et al. (2007) for testing the statistical significance of the density of 
the sub-graph induced by a community against a corresponding null-model. 

In our experiments we observed that COMODO tends to return substantially larger 
communities in comparison to the other algorithms. Additionally, the communities 
described by COMODO are always statistically significant. In contrast, for the Moses and 
Copra algorithms up to 60% of the discovered communities do not pass a significance 
test of the required significance level of α < 0.01, cf. Tables 3 to 6. Furthermore, in these 
experiments the p-values obtained from the COMODO results are usually by far stricter 
than those by the other algorithms and much stricter than required. In particular, for none 
of the communities discovered by COMODO the p-value exceeded 10–10. This is 
especially important, since community mining – as pattern mining in general – suffers 
from the multiple comparison problem (see Holm, 1979). 
Table 3 Comparison of different community detection algorithms on the continuous distance 

networks for a minimal viewcount of 1,000 

Comodo Copra Moses 
τsim 

n Size PS 
 

n Size PS 
 

n Size PS 
0.3 100 126.8 ± 74.0 100%  37 37.1 ± 37.2 68%  44 26.4 ± 32.3 68% 
0.5 91 119.4 ± 71.3 100%  21 31.2 ± 43.6 76%  25 31.2 ± 43.8 56% 
0.8 72 129.9 ± 62.4 100%  6 41.5 ± 67.0 67%  11 31.0 ± 34.9 82% 

Note: The table includes the semantic similarity threshold τsim, the number of 
communities (n), the mean sizes, and the share (PS) of statistically significant 
communities according to a p-value of at least 0.01. 

Table 4 Comparison of different community detection algorithms on the continuous distance 
networks for a minimal viewcount of 500 

Comodo Copra Moses 
τsim 

n Size PS n Size PS n Size PS 
0.3 58 158.5 ± 76.1 100% 133 32.0 ± 51.0 54% 178 29.1 ± 39.9 46% 
0.5 61 150.0 ± 78.7 100% 74 29.4 ± 40.0 46% 101 27.5 ± 28.4 57% 
0.8 58 133.0 ± 9.3 100% 22 34.4 ± 41.3 73% 37 27.8 ± 29.5 56% 

Note: The table includes the semantic similarity threshold τsim, the number of 
communities (n), the mean sizes, and the share (PS) of statistically significant 
communities according to a p-value of at least 0.01. 

Table 5 Comparison of different community detection algorithms on a network with a 
neighbourhood distance of 1 km for a minimal viewcount of 500 

Comodo Copra Moses 
τsim 

n Size PS n Size PS n Size PS 
0.3 73 180.0 ± 83.7 100% 33 17.3 ± 9.4 48% 37 21.4 ± 17.8 46% 
0.5 56 190.0 ± 85.2 100% 13 20.1 ± 13.0 46% 19 21.2 ± 16.6 63% 
0.8 58 167.10 ± 60.35 100% 6 18.2 ± 5.7 67% 5 28.8 ± 24.5 80% 

Note: The table includes the semantic similarity threshold τsim, the number of 
communities (n), the mean sizes, and the share (PS) of statistically significant 
communities according to a p-value of at least 0.01. 
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Table 6 Comparison of different community detection algorithms on a network with a 
neighbourhood distance of 1 km for a minimal viewcount of 200 

Comodo Copra Moses 
τsim 

n Size PS n Size PS n Size PS 
0.3 100 434.0 ± 194.8 100% 199 21.3 ± 15.6 40% 224 23.2 ± 27.8 44% 
0.5 100 435.3 ± 173.9 100% 104 20.1 ± 16.6 48% 129 24.1 ± 32.7 50% 
0.8 100 450.5 ± 262.6 100% 40 21.0 ± 13.9 55% 68 20.8 ± 17.9 44% 

Note: The table includes the semantic similarity threshold τsim, the number of 
communities (n), the mean sizes, and the share (PS) of statistically significant 
communities according to a p-value of at least 0.01. 

5.2 Explorative application scenarios 

In the following, we focus on exemplary application scenarios of the presented 
exploratory pattern mining techniques. In an iterative approach, we first describe how to 
discover interesting locations using descriptive community mining. Second, we show 
how to characterise locations. In the examples below, we experimented with different 
parameters and thresholds. These always need to be refined by the user in an interactive 
approach in order to include all of the subjective interestingness criteria of the user. As 
we will see below, the parameters and thresholds can be quite intuitively adapted, from 
general to specific, or vice versa. 

For the collected tagging data, we applied data cleaning and pre-processing methods, 
e.g., stemming and LDA for synonym identification as outlined above. In order to 
identify equivalent tags and combine them within the system we used our semi-automatic 
attribute construction technique. To do so, first a latent dirichlet allocation was performed 
on the dataset to obtain a set of 100 candidate topics. The results were manually 
evaluated and transformed in a dash-tree format, see Section 4.3.1. The input format was 
then used to construct new meta-tags (topics) that are treated like regular tags. 
Additionally, the tags that were used to build these meta-tags were excluded from 
candidate generation. 

The automatically constructed tags were of mixed quality: For a few topics the 
describing tags could be almost directly used as equivalent tags. For example, one 
resulting topic of the LDA was given by the tags: cemetery, friedhof, grave, cimetičre, 
cemeteries, cementerio, friedhöfe, cementerios, cemitério, cimiteri, cimetičres, cemitérios 
and graves. The majority of the topics included several tags that can be considered as 
equivalent, but include other tags as well, for example: architecture, building, 
architektur, church, dom, cathedral, germany, tower, gebäude, window, glass. Some of 
these tags can be used to construct a new meta-tag by manual refinement, e.g., 
architecture, building and architektur, however the tags germany or glass should not be 
used for this purpose. The last group of topics consisted of rather loosely related tags, for 
example: winter, thuringia, snow, town, tree, village, sky. These topics were considered 
inappropriate for the purpose of constructing expressive attributes. 

In summary, LDA provided for a very good starting point to find equivalent tags. 
However, applying only the automatic method was far from a quality level that enabled 
us to use the results directly to construct clear meaningful and comprehensible combined 
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tags. The text-based format in our mining environment proved to be easy to use and  
well-fit for this purpose. 

5.2.1 Discovering interesting locations: descriptive community mining 

For discovering interesting locations using descriptive community mining on networks of 
related photos, we applied different weighting options discussed in Section 4.1. We 
considered the 1.1 million images for discovering photo communities, with different 
minimal semantic similarity thresholds. For identifying prominent images, we restricted 
the analysis to photos with a view count of at least 100. 

In our case study, we focused on the larger Berlin/Brandenburg area, e.g., using a  
tag-resource view, cf. Figure 5. That is, we discover patterns describing interesting 
pictures (resources) that are densely connected and semantically similar according to 
their assigned tags, focusing on the resources in the larger Berlin/Brandenburg area. In 
this way, we obtain subgroups of images occurring in this target region. 

Table 7 shows the results of the continuous weighting option for the region of 
interest, using a tag similarity threshold τs = 0.3. It is evident, that this results in very 
general relations (and communities), e.g., focusing on sports, athletics, cars, and 
architecture related images; several track and field athletics and athletic championships 
took place in this area in 2010. Thus, the continuous weighting option gives a very broad 
view on the relations and can be used for a first browing and overview on selected  
regions – for a macroscopic view. Compared to the microscopic results shown below, it is 
easy to see that the macroscopic option contains a diverse set of topics and can be used 
for a first overview and browsing. 
Table 7 Top community patterns with the continuous distance weighting option selected from 

the greater Berlin/Brandenburg area for a minimal semantic similarity threshold of  
τs = 0.3 

Description Community size Quality 

athletics 246 0.24 

leichtathletik 231 0.22 

sport 347 0.14 

sport ∧ athletics 176 0.13 

car 483 0.09 

arquitectura 470 0.05 

coche 129 0.05 

vintage ∧ car 122 0.05 

design 294 0.05 

exotic 238 0.05 

If we increase the similarity threshold a little τs = 0.8, we observe that the patterns tend to 
concentrate on more specific topics, while overall they still show a broad view on the 
data, cf. Table 8. 
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Table 8 Top community patterns with the continuous distance weighting option selected from 
the greater Berlin/Brandenburg area for a minimal semantic similarity threshold of  
τs = 0.8 

Description Community size Quality 

sport 265 0.24 
athletics 159 0.22 
arquitectura 366 0.16 
vidrio 210 0.15 
museo 157 0.14 

fachada ∧ arquitectura 152 0.13 

patio ∧ vidrio 152 0.13 

daniellibeskind 145 0.12 
kreuzberg 145 0.12 

daniellibeskind ∧ irregular 132 0.12 

For a microscopic view, the neighbourhood distance weighting approach provides more 
focused results as shown in Table 9. It is easy to see that this approach provides for 
interesting topic communities, for example, regarding architecture, museums, sports, or 
specific districts of Berlin (Kreuzberg). 

If we compare Table 7, Table 8 and Table 9, then we observe, that the microscopic 
results (Table 9) contain much longer descriptions and more level of detail. This is 
actually what we expected, since longer descriptions allow for much more detailed 
information – in a microscopic view. 
Table 9 Top community patterns with the neighbourhood weighting option (dmax = 1 km) 

selected from the greater Berling/Brandenburg area, using a minimal semantic 
similarity threshold τs = 0.8 

Description Community size Quality 

arquitectura 363 0.24 

vidrio ∧ arquitectura 210 0.23 

fachada ∧ arquitectura 152 0.22 

kreuzberg 181 0.21 

holocaust ∧ daniellibeskind ∧ kreuzberg 127 0.21 

fachada ∧ patio ∧ vidrio ∧ museo 125 0.21 

kreuzberg ∧ arquitectura ∧ museo 125 0.21 

historic ∧ museo ∧ patio 125 0.21 

potsdamerplatz ∧ arquitectura 108 0.11 

leichtathletik ∧ athletics ∧ sport 98 0.11 

5.2.2 Characterising locations: profile generation using social media 

In the following, we characterise locations by identifying tag combinations which are 
interesting for the specified location. In our first example we consider the city centre of 
Berlin, more precisely, the location of the Brandenburger Tor. The expected tags were, 
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for example, brandenburgertor, reichstag, holocaustmemorial (since this memorial is 
nearby). Of course, also the tag berlin is to be expected. An exemplary tag-map for the 
tag brandenburgertor is shown in Figure 5. Figure 9 shows the distance distribution of 
this tag to the actual location. 

Figure 9 Histogram showing the distances of pictures with the tag ‘brandenburgertor’ to the 
actual location 

 

 

Notes: It can be seen in the left histogram that the tag is very specific, since the vast 
majority of pictures with this tag is within a 5 km range of the location. The 
histogram on the right side shows the distance distribution up to 1 km in detail.  
It can be observed that most pictures are taken at a distance of about 200 m to the 
sight. 
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First we investigated, which candidate tags were returned by an automatic search using 
the different proposed target concept options. The results are shown in Tables 10 to 14. 
For pattern mining, we applied the proposed quality function with a = 0.5. 

Table 10 shows, that the results include several tags, which are not very specific for 
the location of interest, but for another nearby location, for example the tags potsdam or 
leipzig for cities close to Berlin. This can be explained by the fact, that these tags are 
quite popular and the average distance for pictures with this tag is relatively low in 
comparison to the total population even if pictures do not correspond to the location of 
interest itself, but for a nearby location. Since the use of the distance function d(p) does 
not allow for parametrisation, it is difficult to adapt the search, such that those tags are 
excluded. 

Tables 11 to 13 show the neighbour function with different distance thresholds dmax, 
from 0.1 km to 5 km. It is important to note that we show the neighbour share in the 
result tables, i.e., the share of pictures within the range of interest defined by the maximal 
distance dmax. The results for this target concept are strongly dependent on this threshold. 
For a very small value of dmax = 0.1 km the results seem to be strongly influenced by 
some kind of noise, since the number of pictures in this neighbourhood is relatively 
small. For example it includes the tags metro, gleis (translated: ‘rail track’) or 
verkehrsmittel (translated ‘means of transport’). While these tags should occur more often 
in urban areas, they are by no means the most representative tags for the area around the 
Brandenburger Tor. 
Table 10 Brandenburger Tor: the top patterns (max. description size 1) for the common mean 

target distance function, cf. Section 4.2.1 

Tag Size Mean target distance (km) 
berlin 113,977 10.48 
potsdam 5,533 26.83 
brandenburg 5,911 47.33 
leipzig 10,794 147.87 
kreuzberg 3,935 14.11 
leute 4,547 53.37 
berlinmitte 3,054 4.76 

Table 11 Brandenburger Tor: the top patterns (description size 1) for the target distance 
function neighbour, cf. Section 4.2.1, with dmax = 0.1 km 

Description Subgroup size Neighbour share 

wachsfigur 322 0.99 
madametussauds 177 0.853 
verkehrsmittel 163 0.313 
metro 469 0.277 
berlinunderground 158 0.247 
brandenburgertor 1,136 0.085 
gleis 375 0.085 

Notes: The neighbour share indicates the share of pictures within the range of interest 
defined by the maximal distance. 
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Table 12 Brandenburger Tor: the top patterns (description size 1) for the target distance 
function neighbour, cf. Section 4.2.1, with dmax = 1 km 

Description Subgroup size Neighbour share 

reichstag 2,604 0.829 
heinrichböllstiftung 1,211 0.988 
brandenburgertor 1,136 0.816 
sonycenter 803 0.923 
gendarmenmarkt 696 0.885 
potsdamer 577 0.88 
panoramapunkt 271 1 

Notes: The neighbour share indicates the share of pictures within the range of interest 
defined by the maximal distance. 

Table 13 Brandenburger Tor: the top patterns (description size 1) for the target distance 
function neighbour, cf. Section 4.2.1, and a threshold dmax = 5 km 

Description Subgroup size Neighbour share User count 

kreuzberg 3,933 0.961 405 
mitte 3,507 0.972 404 
reichstag 2,604 0.976 680 
potsdamerplatz 2,017 0.97 375 
karnevalderkulturen 1851 0.958 36 
alexanderplatz 1,699 0.989 546 
heinrichböllstiftung 1,211 1 3 

Notes: The last column shows the overall count of users that used this description. The 
neighbour share indicates the share of pictures within the range of interest defined 
by the maximal distance. 

In contrast, the parameter dmax = 1 km yields results that do meet our expectations. The 
resulting tags reflects the most important sites in that area according to travel guides, 
including reichstag, brandenburgertor, potsdamerplatz and sonycenter. We consider 
these tags as the most interesting and representative for this given location. However, we 
do not assume that this parameter will lead to the best result in all circumstances. For 
example, in more rural areas, where more landscape pictures with a larger distances to 
depicted objects are taken, we expect that a larger value of dmax might be needed. 

As shown in Table 13, for a parameter of dmax = 5 km the results are tags, which are 
specific for Berlin as a whole, but not necessarily for the area around the Brandenburger 
Tor. The results include tags like kreuzberg or alexanderplatz, which describe other areas 
in Berlin. 

Table 14 exemplifies the fuzzified distance function ranging from 1 km to 5 km as 
lower and upper thresholds. The results indicate, that this function is less sensitive to the 
parameter choices. Therefore, selecting the parameter is less difficult; distances like  
1–5 km as in the presented example can be applied for a microscopic to a mesoscopic 
perspective. The collected results form a nice compromise between the results of the 
respective neighbour functions with the different thresholds discussed above (see  
Tables 11–13 for reference). 
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Table 14 Brandenburger Tor: the top 7 patterns (description size 1) for the ‘fuzzified’ target 
distance function, cf. Section 4.2.1, ranging from 1 km to 5 km 

Description Subgroup size Mean target distance 

reichstag 2,604 0.05 

potsdamerplatz 2,017 0.05 

berlinmitte 3,053 0.30 

heinrichböllstiftung 1,211 0.01 

brandenburgertor 1,136 0.10 

alexanderplatz 1,699 0.28 

sonycenter 803 0.02 

5.2.3 Including instance weighting 

Taking a closer look at the results of Table 13 most of the resulting tags provide a good 
description of the larger area of Berlin. However, there are a few exceptions: 
karnevalderkulturen describes a seasonal well known, but not indicative event in Berlin. 
heinrichböllstiftung is a political foundation, for which the headquarters are located in 
Berlin. While both tags are certainly associated with Berlin, one would not expect them 
to be as important or typical for Berlin as other descriptions. The occurrence of these tags 
can be explained by a few ‘power users’ that extensively used these tags for many 
images. 

To show this effect, we added an additional column to Table 13, which computes the 
overall count of users that used that description. For example the tag heinrichböllstiftung 
was applied for 1,211 images, but only by three different users. 

To avoid such results in the candidate generation, we apply an instance (resource) 
weighting as described in Section 2.3. The results are presented in Table 15 and show a 
more focused tag presentation. Thus, we consider the attribute weighting as appropriate 
to reduce bias towards the vocabulary of only a few but very active users, as shown in the 
example. 
Table 15 Brandenburger Tor: top patterns (description size 1) using instance weighting for the 

target distance function neighbour, cf. Section 4.2.1, and a threshold dmax = 5 km 

Description Weighted subgroup size Weighted neighbour share User count 

reichstag 431.9 0.972 680 

mitte 366.3 0.97 404 

kreuzberg 371 0.96 405 

alexanderplatz 275.6 0.982 546 

berlinwall 237.8 0.945 275 

potsdamerplatz 196.4 0.963 375 

brandenburgertor 139.4 0.931 332 

Notes: The last column shows the overall count of users that used this description. 
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6 Conclusions 

In this paper, we presented exploratory pattern mining techniques for describing social 
media based on tagging information and collaborative geo-reference annotations. We 
proposed methods for obtaining sets of tags that describe interesting communities of 
resources (e.g., images), and discover interesting tag descriptions for locations of interest. 
For assessing both interesting resources and tag descriptions, we considered semantic 
closeness and geographical distance. Additionally, we provided an exploratory approach 
for mining, browsing and visualising a set of candidate patterns. This enables  
several options including selectable analysis-specific interestingness measures and 
semiautomatic feature construction techniques. In an interactive process, the results can 
then be visualised, introspected and refined. For demonstrating the applicability and 
effectiveness, we presented a case study using real-world data from the photo sharing 
application Flickr. 

For future work, we aim to consider richer location descriptions as well as further 
descriptive data besides tags, e.g., social friendship links in the photo sharing application, 
or other link data from social networks. Also, the integration of information extraction 
techniques (e.g., Atzmueller et al., 2011) seems promising, in order to add information 
from the textual descriptions of the images. Furthermore, we plan to include more 
semantics concerning the tags, such that a greater detail of relations between the tags can 
be implemented in the pre-processing, the mining, and the presentation. 
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