Correlation of micro and nano-scale defects with WVTR for aluminium oxide barrier coatings for flexible photovoltaic modules Online publication date: Sun, 06-Oct-2013
by L. Blunt; M. Elrawemi; L. Fleming; F. Sweeney
International Journal of Precision Technology (IJPTECH), Vol. 3, No. 3, 2013
Abstract: This paper seeks to establish a correlation between surface topographical defects and water vapour transmission rate (WVTR) measured under laboratory conditions for aluminium-oxide (Al2O3) barrier film employed in flexible photovoltaic (PV) modules. Defects in the barrier layers of PV modules causing high WVTR are not well characterised and understood. A WVTR of ~10−1 g/m2/day is sufficient for the most packaging applications, but ≤10−6 g/m2/day is required for the encapsulation of long-life flexible PV modules (Carcia et al., 2010a, 2010b). In this study, surface metrology techniques along with scanning electron microscopy (SEM) were used for a quantitative characterisation of the barrier film defects. The investigation have provided clear evidence for the correlation of surface defect density and the transmission of water vapour through the barrier coating layer. The outcomes would appear to suggest that small numbers of large defects are the dominant factor in determining WVTR for these barrier layers.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Precision Technology (IJPTECH):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com