A discrete artificial bee colony for multiple Knapsack problem Online publication date: Tue, 22-Oct-2013
by Shima Sabet; Mohammad Shokouhifar; Fardad Farokhi
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 5, No. 2, 2013
Abstract: Multiple Knapsack problem (MKP) is a most popular multiple subset selection problem that belongs to the class of NP-Complete problems. The aim is to assign optimal subsets among all original items to some knapsacks, such that the overall profit of all selected items be maximised, while the total weight of all assigned items to any knapsack does not exceed the allowable capacity of it. Artificial bee colony (ABC) algorithm is a new meta-heuristic with a stochastic search strategy. In ABC, the neighbourhood area of any best-found solution is searched by the employed bees to achieve better solutions. This paper presents a discrete ABC algorithm for the MKP. In this approach, a hybrid probabilistic mutation scheme is performed for searching the neighbourhood of food sources. The proposed algorithm can guide the search space quickly and improve the local search ability. Experimental results demonstrate that the presented approach has improved the quality and convergence speed than other evolutionary algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com