Enhancing artificial bee colony algorithm using inversely proportional mutation Online publication date: Tue, 22-Oct-2013
by Bilal Babayigit; Resul Ozdemir
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 5, No. 2, 2013
Abstract: Artificial bee colony (ABC) algorithm is a recently invented powerful optimiser. ABC has become very popular in swarm intelligence research area and has the advantages of its few control parameters, simplicity and ease of implementation. However, latest studies have been devoted to the improvement of the exploitation capability of the standard ABC, because ABC is good at exploration but poor at exploitation, and the convergence speed is also an issue in some cases. Motivated by these issues, this paper proposes a modified ABC algorithm that uses an inversely proportional mutation function and a new search mechanism to solve numerical function optimisation problems. The proposed algorithm is applied to a set of nine well-known benchmarks with different dimensions. To verify the performance of the proposed algorithm, it is compared with the standard ABC algorithm. Experimental results demonstrate that the proposed modified ABC algorithm performs much better than the standard ABC algorithm.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com