FPGA-based parallel architecture for PID control algorithm and HDL co-simulation
by T. Ananthan; M.V. Vaidyan
International Journal of Embedded Systems (IJES), Vol. 5, No. 4, 2013

Abstract: This paper aims to describe a dedicated high throughput parallel architecture for digital proportional-integral-derivative (PID) controller along with its field programmable gate array (FPGA) and application specific integrated circuit (ASIC) implementations. The processing speed of the controller depends on design of arithmetic units. In this context, this design incorporates parallel multipliers and a parallel adder to enhance the processing speed. This design is deeply pipelined to achieve high throughput. The algorithm is prototyped on Xilinx FPGA and implemented in 180 nm technology using cadence RTL complier. The performance of the controller is analysed by the results from a dc-dc buck converter control system through hardware descriptive language (HDL) co-simulation. Electronic design automation (EDA) simulator link interacts with hardware and software in MATLAB/Simulink environment and in this environment the response of the buck converter control system prior to hardware implementation is shown.

Online publication date: Sat, 19-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com