Concurrent sequential patterns mining and frequent partial orders modelling
by Jing Lu; Malcolm Keech; Weiru Chen; Cuiqing Wang
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 8, No. 2, 2013

Abstract: Structural relation patterns have been introduced to extend the search for complex patterns often hidden behind large sequences of data, with applications (e.g.) in the analysis of customer behaviour, bioinformatics and web mining. In the overall context of frequent itemset mining, the focus of attention in the structural relation patterns family has been on the mining of concurrent sequential patterns, where a companion approach to graph-based modelling can be illuminating. The crux of this paper sets out to establish the connection between concurrent sequential patterns and frequent partial orders, which are well known for discovering ordering information from sequence databases. It is shown that frequent partial orders can be derived from concurrent sequential patterns, under certain conditions, and worked examples highlight the relationship. Experiments with real and synthetic datasets contrast the results of the data mining and modelling involved.

Online publication date: Sat, 28-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com