Mahalanobis Taguchi System (MTS) and Mahalanobis Taguchi Gram-Schmidt (MTGS) methods as multivariate classification tools
by Smarajit Bose; Rita SahaRay; Rohosen Bandyopadhyay
International Journal of Industrial and Systems Engineering (IJISE), Vol. 16, No. 1, 2014

Abstract: The Mahalanobis Taguchi System (MTS) and Mahalanobis Taguchi Gram-Schimdt (MTGS) methods were developed as diagnostic and predictive tools to separate between 'normal' and 'abnormal' data. The objective of these methods is to establish a measurement scale based on the 'normal' data so that the 'abnormal' data can be identified along with the degree of 'abnormality'. The goal of the present paper is to employ these methodologies as classification tools for multivariate data in general multi-class problems and compare the accuracy of the proposed tool with that of other existing multivariate classifiers using a variety of real life datasets.

Online publication date: Sat, 07-Jun-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com